

M.KUMARASAMY Autonomous Institution Approved by AFTE & Athlaned to Anna University 50 9001-2015 Certified Instruction Thalavapalayam, Karur, Tamilnadu.

	Regul	ation 2	018		Sem	ester I	II / Ser	nester	IV			'otal Ho		(50
	Regui					and a second				_	Н	ours / V	Veek		c
Catego	ry I	Course	Code			Cou	rse Na	me			L	Т	1		-
М		18CYN	1201T		En	vironn	nental S	science			1	0	(0	-
rerequi	site Co	urse (s)											la constante	
NIL.															
Course C	Objecti	ve (s):								• •					
The purp			g this c	ourse i	s to:								- 4		
•	To get protect Outco nd of th Impro system Chara the ge Impro water Unde	human me (s) (nis cour ove func- ns acterize eneration ove the suppli erstand	ns which health (Cos): se, lea dament and m on of c reliabi es and the sou	rners w tal know itigate lifferen lity, pe treatm	fill be a wledge man-m t forms rforma ent pro-	of the ade ha of ene nce, di ocesses	inter-re zards li rgy saster-r	lations ke nuc manage	hips b lear ha ment f vario	etween to izards. U of natur us envir	he built Indersta al calam	enviror nd the p nities an al pollut	nment an orinciples d solid v ion child we	id natura s involv vaste an	al ed in
CO-PC) Map	ping												PSOs	
COs							POs			nore	PO11	PO12	PSO1	PSO2	PSO:
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			-	-	
		2	-	-	•	-	3	-	-		-				1
CO1	-					3	3	-	-	-	-	-	1		1
C01 C02	-	2		-						1					1
		2	•	2	-	3	3	-	-	-	-	-	1		1
CO2	-					3	3	2	-	- 	-	-	1	-	1
CO2 CO3		2	-	2	-										+

1: Slight (Low)

2: Moderate (Medium)

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTL & Affiliated to Anna University ISO 9001-2015 Certified Institution Thalavapalayam, Karur, Tamilnadu,

υ	UNIT I	ENVIRONMENT& BIODIVERSITY	3
diversi	ity-definition-	environment, components of environment, scope-importance of environmental value of biodiversity-Threats to biodiversity - India a mega diversity nation s of India-conservation of biodiversity.	studies- Bio n-endangereo
υ	NIT II	ENERGY SOURCES	3
Energy energy &uses)	sources - Nu	Growing energy needs- Renewable and Nonrenewable energy sources- Use uclear Energy- Alternative energy fuels-power alcohol-Bio diesel (preparatio	of alternation, propertie
U	NIT III	SOCIAL ISSUES AND ENVIRONMENT	3
Enviro accide	onment ethics ents-holocaust.	s – Climate change – Global warming – Acid rain – Ozone layer depleti . Solid waste management - Rain water Harvesting-watershed management-	on –Nuclea
100000			
Source Polluti (Preve	ion -The Env	ENVIRONMENTAL POLLUTION & ACTs ets & control- Air pollution - Water pollution – Soil pollution – Marine pollution avironment (Protection) Act - Air (Prevention and control of pollution) introl of pollution) Act- Role of individual in prevention of pollution. HUMAN POPULATION AND ENVIRONMENT	
Source Polluti (Preve U Sustai Welfa	e, types, effection -The Envention and con JNIT V inable develop re Program –	ets & control- Air pollution - Water pollution – Soil pollution – Marine pollution vironment (Protection) Act - Air (Prevention and control of pollution) ntrol of pollution) Act- Role of individual in prevention of pollution. HUMAN POPULATION AND ENVIRONMENT poment – Urban Population growth and distribution – Population explosi- Women and child welfare- Role of information technology in environmen	n and Plasti Act - Wate 3 on - Famil
Source Polluti (Preve U Sustai Welfa	e, types, effection -The Envention and con JNIT V	ets & control- Air pollution - Water pollution – Soil pollution – Marine pollution vironment (Protection) Act - Air (Prevention and control of pollution) ntrol of pollution) Act- Role of individual in prevention of pollution. HUMAN POPULATION AND ENVIRONMENT poment – Urban Population growth and distribution – Population explosi- Women and child welfare- Role of information technology in environmen	n and Plasti Act - Wate 3 on - Famil
Source Polluti (Preve U Sustai Welfa health	e, types, effection -The Envention and con JNIT V inable develop re Program –	ets & control- Air pollution - Water pollution – Soil pollution – Marine pollution vironment (Protection) Act - Air (Prevention and control of pollution) introl of pollution) Act- Role of individual in prevention of pollution. HUMAN POPULATION AND ENVIRONMENT ppment – Urban Population growth and distribution – Population explosin- Women and child welfare- Role of information technology in environmen	n and Plasti Act - Wate 3 on - Famil
Source Polluti (Preve U Sustai Welfa health	e, types, effection -The Envention and con JNIT V Inable developure Program - I- case studies	ets & control- Air pollution - Water pollution – Soil pollution – Marine pollution vironment (Protection) Act - Air (Prevention and control of pollution) introl of pollution) Act- Role of individual in prevention of pollution. HUMAN POPULATION AND ENVIRONMENT ppment – Urban Population growth and distribution – Population explosin- Women and child welfare- Role of information technology in environmen	n and Plasti Act - Wate 3 on - Famil
Source Polluti (Preve U Sustai Welfa health Text /	e, types, effection -The Envention and con JNIT V inable developure Program - i- case studies Reference (s	ets & control- Air pollution - Water pollution – Soil pollution – Marine pollution vironment (Protection) Act - Air (Prevention and control of pollution) introl of pollution) Act- Role of individual in prevention of pollution. HUMAN POPULATION AND ENVIRONMENT popment – Urban Population growth and distribution – Population explosin- Women and child welfare- Role of information technology in environmen s) books:	n and Plasti Act - Wate 3 on – Famil t and huma
Source Polluti (Preve U Sustai Welfa health	e, types, effection -The Envention and con JNIT V inable develop re Program - - case studies / Reference (s Dr.J.P.Sharr Miller "Env (2006). Master. G.M	ets & control- Air pollution - Water pollution – Soil pollution – Marine pollution vironment (Protection) Act - Air (Prevention and control of pollution) introl of pollution) Act- Role of individual in prevention of pollution. HUMAN POPULATION AND ENVIRONMENT opment – Urban Population growth and distribution – Population explosing -Women and child welfare- Role of information technology in environment s) books: ma, "Environmental studies", Laxmi Publications(p) Ltd, New Delhi.	n and Plasti Act - Wate 3 on – Famil t and huma
Source Polluti (Preve U Sustai Welfa health Text / 1 2	e, types, effection -The Envention and con JNIT V inable develop re Program – - case studies / Reference (s Dr.J.P.Sharr Miller "Env (2006).	ets & control- Air pollution -Water pollution – Soil pollution – Marine pollution vironment (Protection) Act - Air (Prevention and control of pollution) introl of pollution) Act- Role of individual in prevention of pollution. HUMAN POPULATION AND ENVIRONMENT opment – Urban Population growth and distribution – Population explosin- Women and child welfare- Role of information technology in environment s) books: ma, "Environmental studies", Laxmi Publications(p) Ltd, New Delhi. vironmental Science" 11 th Edition, Cengage Learning India Private Limited M., "Introduction to Environmental Engineering and Science", Pearson Education rishnan "Environmental Science and Engineering " Sri Krishna	n and Plasti Act - Wate 3 on – Famil t and huma

0

1

0 3

C

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

	Regula	ntion 2018	Semester III	T	otal Hou	rs	45
				Но	urs / We	ek	
Cate	egory	Course Code	Course Name	L	Т	Р	C
PC	CC	18CEC202T	CONSTRUCTION MATERIALS AND TECHNIQUES	3	0	0	3
Prere	equisite	e Course (s)					
Basic	Civil a	nd Mechanical E	Engineering				
Cour	se Obj	ective (s): The p	urpose of learning this course is to:	2 0 4 2 1 1 1 1 2 3			
1	Summ	narize the knowl	edge of geology and its engineering conside	rations			
2	Able	to describe in de	tails about rocks and its types				
3	Acqu	ire knowledge or	n commonly used construction materials				
4	Obtai	n knowledge abo	out various construction practices				
5	Have	exposure on sub	-structure, super structure construction tech	niques			
Cour	se Out	come (s) (COs):	At the end of this course, learners will be al	ole to:			
CO1			ge of the topographical formation, interior enterior enterior of plate tectonics	earth, gr	adational	activiti	es and
CO2	Interp prope		nd rocks and assessment of its physical,	mecha	nical and	d engin	eering
CO3	Identi	ify the appropriat	te materials used in construction				
CO4	Seque	ence the various	construction practices				
CO5	Explo	ore the sub struct	ure and super structure construction techniq	ues			

CO-PO Mapping

COs	POs													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C01	3	1	1		(R) (2	3	2			ž.	1	1	2	
CO2	3	1	1	-	- e	2	3	2	*	÷	÷	1	1	2	
CO3	2	1	2	1	9 4 8	2	-	3		2	-	2	3	3	
CO4	3	1	2	1		2	-	3		2		2	3	3	
C05	2	1	2	2		2		3		2	-	2	3	3	
CO (Avg)	2.60	1.00	1.60	1.33	0.00	2.00	3.00	2.60	0.00	2.00	0.00	1.60	2.20	2.60	

ONOMOL

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

of thef Engg.

KARUR - 633 11

MAR 2019

75

M.KUMARASAMS COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalavam, Karur, Tamilnadu,

9

9

9

9

9

UNIT I ENGINEERING GEOLOGY

Geology in Civil engineering – branches of geology – scope – earth structures and composition – elementary knowledge on continental drift and plate technologies – earth processes – weathering – types – geological work of river and wind – engineering.considerations.

UNIT II ROCKS AND BUILDING STONES

Classification of rocks – distinction between igneous, sedimentary and metamorphic rocks. Igneous rocks – Granite, Gabbro, Dolerite and Basalt. Sedimentary rocks – Sandstone, Limestone, Conglomerate and Breccia. Metamorphic rocks – Quartzite, Marble, Slate and Schist.

UNIT III | MATERIALS FOR CONSTRUCTION

Timber – market form of timber – veneer – plywood – bricks – steel – TMT and GFRP bars – steel fibre – glass fibre – plastic – types of plastic – PVC – UPVC – paint – distemper – varnish

UNIT IV | CONSTRUCTION PRACTICES

Stone masonry – brick masonry – load bearing wall – reinforced wall – framed structures – scaffolding and its types – basic of formwork – slip form work – centring – plastering – pointing.

UNIT V | CONSTRUCTION TECHNIQUES

Sub structures: Trenchless techniques – box jacking – pipe jacking – tunnelling – sheet piling – piling techniques.

Superstructures: Launching girders – Bridge decks – Shells – domes – Introduction to prefabricated structures.

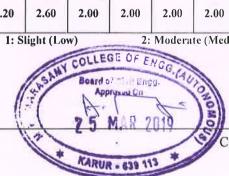
Text Book (s)

1	Parbin Singh, "Engineering and General Geology", Taylor & Francis, 2009.
2	Arora S.P. and Bindra S.P., "The Text Book of Building Construction", Dhanpat Rai and Sons, 2010.
Refer	ence (s)
1	F.G. Bell "Engineering Geology", Elsevier, 2nd ed. 2007.
2	Edward Allen and Joseph Iano, "Fundamentals of Building Construction: Materials and Methods", Wiley, 5 th Edition, 2008.
3	Rangwala S.C., "Engineering Materials" Charotar Publishing House, Anand, India, 2014.
4	Peurifoy. R. L, "Construction Planning, Equipment and Methods", McGraw Hill Co., New

York, 2010.

4

0000000


Ģ

M.KUMARASAMY COLLEGE OF ENGINEERING

NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

I	Regula	tion 20	18			Semes	ster III				Total	Hours		75
Cate	egory	Co	urse			Cours	e Namo]	Hours	/ Week	<u>.</u>	C
Call	gory	C	ode				nke se	夏夏日月		L		Т	Р	C
PC	CC	18CE	C204J				MEN ERING			3		0	2	4
Prere	equisit	e Cour	se (s)		24				Ê li i	3	100 AU		120	
Envir	onmen	tal Scie	ence					v						
Cour	se Obj	ective	(s): The	e purpo	ose of le	earning	this co	ourse is	to:					
1	To in	npart kn	owledg	e on the	various	s issues	pertaini	ing to q	antity	of water				8
2	To in	npart kn	owledg	e on hy	drologic	al cycle	e and va	rious sc	urces o	f water				
3	To e	mphasiz	ze the qu	uality of	f water a	and vari	ous sys	tem of c	conveya	nce of v	vater			
4	To le	arn aboi	ut Princ	iples an	d desig	ı of wat	er treati	ment sy	stem					
5	To er	nphasiz	e the ne	ed for d	istribut	ion syst	ems and	l service	e reserv	oir				
Cours	se Outc	ome (s)	(COs):	At the	end of t	his cou	rse, lear	mers wi	ll be ab	le to:				
CO1	Anal	yze quai	ntity of	water a	nd need	s of put	olic wate	er suppl	y schen	nes.				
CO2	Ident	ify the s	ources	of wate	r and ev	aluate t	he stora	.ge capa	city of	the resea	voir.			
CO3	Relat	e water	quality	criteria	and sta	ndards t	o publi	c health						
CO4	Cons	truct ap	propriat	e treatn	nent sch	emes to	remov	e certair	n polluta	ants pre	sent in v	water		
CO5	Desig	gn and e	valuate	water d	istribut	ion alter	natives	on basi	s of cho	osen crit	eria.			
СО-Р	O Map	ping	× L	,				1						
COs						P	Os			1			PS	Os
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	۲	2	2	2	1	1		2	2	1
CO2	3	2	3	2	2	2	2	1	1	1	₹	1	2	1
CO3	2	2	3	2	2	2	2	1	1	1		2	2	1
CO4	3	2	3	2	2	2	2	2	1	1	•	2	3	1
CO5	2	2	2	2	-	2	2	1	1	1	-	1	1	1
со														

Curriculum and Syllabus | 2018 Regulation

1.

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

9

9

9

9

9

30

UNIT I INTRODUCTION

Necessary and objectives of public water supply schemes – planning and financing – report preparation of schemes-quantity of water – water requirements for continuous and intermittent supply – rate of demand – variations in rate of demand – its effect on design –design periods and capacities of different components –population growth and forecast estimating the quantity of water required.

UNIT II HYDROLOGICAL CONCEPTS AND SOURCES OF WATER

Hydrological concepts-hydrological cycle – precipitation – types of precipitation – rain fall measurements – rain fall indices – estimation of surface runoff – Sources of water –types of sources – wells – lakes – ponds – rivers – infiltration galleries - intakes – types – intake tower – storage reservoirs – determination of reservoir storage capacity by analytical and mass curve methods.

UNIT III QUALITY OF WATER AND CONVEYANCE OF WATER

Characteristics of water - sampling -analysis of water - water borne diseases - water quality standards- conveyance of water - types of conduits - hydraulics of pipe flow - pipe corrosion - theories - effect and prevention - laying and testing of pipe lines - pumps - pumping stations.

UNIT IV TREATMENT OF WATER

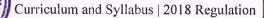
Treatment of water – working principles, purpose and design – screening – plain sedimentation – coagulation – filtration – disinfection – water softening – ion exchange- membrane processes.

UNIT V DISTRIBUTION OF WATER AND IMPACT OF WATER SUPPLY SCHEMES

Distribution of water – requirements of good distribution system – method of distribution system – layouts of distribution system – distribution reservoirs – purpose – types– preventive methods to reduce wastage of water – impact of water supply schemes- 3R principles of water management.

LIST OF EXPERIMENTS

- 1. Sampling and preservation methods and significance of characterization of water and Wastewater.
- 2. Determination of pH and turbidity
- 3. Determination of hardness of water
- 4. Determination of dissolved oxygen
- 5. BOD Test
- 6. COD Test


£...)

0 0 J

7. Determination of ammonia nitrogen in water sample

KARUR = 639 113

- 8. Determination of nitrates in water sample
- 9. Determination of phosphate in water sample
- 10. Determination of potassium and sodium
- 11. Heavy metals determination chromium, lead and zinc. (Demonstration only)

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001/2015 Certified Institution Thalavapalayam, Karur, Tamlinadu,

Text	Book (s)
1	Garg, S.K., "Environmental Engineering Vol. I", 24 th Edition, New Delhi, Khanna Publishers, 2018.
2	Mark J. Hammer, Mark J. Hammer Jr, "Water and Waste Water Technology", Prenticehall new arrivals 2012.
Refe	rence (s)
1	"Manual on water supply and Treatment", CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1999.
2	Qasim, S.R., Motley, E.M. and Zhu.G. "Water works Engineering – Planning, Design and Operation", Prentice Hall, New Delhi, 2002.
3	Birdie, G.S. and Birdie, J.S., "Water Supply and Sanitary Engineering", Dhanpat Rai and Sons, New Delhi, 2014.
4	Punmia, B.C., Jain, A.K., and Jain.A., "Environmental Engineering, Vol.I," Lakshmi Publications, 2015.
5	Poonia, M.P., Sharma, S.C., "Environmental Engineering", Khanna Publishers 2018.

Ģ

0

 (\hat{e})

0

-0

C C C C C C C

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution

Thalavapalayam, Karur, Tamilnadu.

	Regu	lation	2018				Seme	ster I	V			Total	Hours	E y	45
Cat	egory		Cours	e			0	N	1	12		Hours	/ Week		
Cat	egory		Code				Cours	se Nan	1e		I		Т	Р	С
Р	CC	180	CEC20	98T				NMEN EERIN			3		0	0	3
Prer	equisi	te Cou	rse (s)		34.1								1	1.5	1
Envi	ronmei	ntal Er	igineer	ing I											
Cour	se Ob	jective	e (s): T	he purj	pose of	learnir	ng this o	course	is to:	1977					
1	1					A COMPANY OF			1	o quant	ity of w	vaste wa	ter		
2			know		_										
3		_									nt syste				
4										ment sy				_	_
5												use of us			-
L.C.	- 172		the second se				_						sed wate	er.	7.1
CO1							and the second second		-		able to			кн ⁷⁷ П	i.
	-	_	_			_		_		system					
CO2	was	tewate	e char	acteris	tics of	waster	water a	and dea	sign th	e prima	ry treati	ment un	its of		
CO3	Con	struct	approp	oriate t	reatme	nt sch	emes t	o remo	ve cer	tain pol	lutants	present	in wast	woto	
CO4	_											ng the e	_		1
CO5												en criter		nent.	_
	O Ma		a o ruic		.510 114							en criter	1a.	451	
		pping				1.11	POs	1.2.1				1 - 1	1		
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	P09	PO10	P011	PO12		SOs	
C01	3	3	2	2		2	2	2	1	1	1	PO12	PSO1 2	PSC 1	
CO2	3	3	3	2	-	2	2	1	1	1	1	1	2	1	
CO3	3	3	3	2	-	2	2	1	1	1	1	2	2	1	
CO4	3	2	3	1	-	2	3	2	1	1	1	2	3	1	
CO5	3	2	2	1	-	3	3	1	1	1	1	1	I	1	
CO (Avg)	3.00	2.60	2.60	1.6	0.00	2.20	2.40	1.40	1.00	1.00	1.00	1.60	2.00	1.00)

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

(

0.0

CCCCCCCC

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University

NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

D (FI PLANNING AND DESIGN OF SEWERAGE SYSTEM	9
- se	tion – classification – systems of sewerage – quantity of sewage – fluctuation in flow patter tion and storm runoff – design flow for separate and combined system – hydraulics of sew cleansing velocities – full flow / partial flow conditions – sewer sections – material for sew r joints – jointing materials – sewer laying under various conditions – test on sewers – sev nance – sewer appurtenances – sewage pumping – types of pumps.	ers
UN	THE ALWENT OF WASTEWATER	9
prim desi	teristics and composition of sewage – physical and chemical analysis – DO and BOD a ignificances – cycles of decomposition – fundamentals of microbiology of wastewater treatment – screens –principles of grit chambers – principles, types of sedimentation of sedimentation tanks – septic tanks and effluent disposal systems.	ind
UNI	III BIOLOGICAL TREATMENT OF WASTEWATER	9
equa	principles of biological treatment – activated sludge process – recirculation – diffuser lical aeration – process modification – oxidation ditch – trickling filter – principles – NF n-principles of rotating biological contactor (RBC)– principles of sequencing bat (SBR) – principles of membrane bioreactor – principles of UASB.	
JNI	THE ANO HOUSE DRAINAGE	9
inges	ves of sludge treatment – properties and characteristics of sludge – sludge thickening – slud n - drying beds - conditioning and dewatering - sludge disposal - sanitary fixtures a pipe system – general layout of house drainage.	ige Ind
UNI	V SEWAGE DISPOSAL	9
UNI /leth echn	V SEWAGE DISPOSAL	
UNI Aeth echn euse	V SEWAGE DISPOSAL s - dilution - self-purification of streams - oxygen sag curve - wastewater reclamationer ues - land disposal - sewage farming - deep well injection - eutrophication - recycle are	<u>.</u>
UNI Aeth echn euse	V SEWAGE DISPOSAL s - dilution - self-purification of streams - oxygen sag curve - wastewater reclamation ues - land disposal - sewage farming - deep well injection - eutrophication - recycle and wastewater. ok (s) Garg, S.K., "Environmental Engineering Vol. II", 24 th Edition, New Delhi, Khanna Publishers, 2018	<u>.</u>
UNI Aeth echn euse 'ext 1	V SEWAGE DISPOSAL s - dilution - self-purification of streams - oxygen sag curve - wastewater reclamation tes - land disposal - sewage farming - deep well injection - eutrophication - recycle ar wastewater. ok (s) Garg, S.K., "Environmental Engineering Vol. II", 24 th Edition, New Delhi, Khappa	
UNI Aeth echn euse 'ext 1 2	V SEWAGE DISPOSAL s - dilution - self-purification of streams - oxygen sag curve - wastewater reclamation are sewage farming - deep well injection - eutrophication - recycle are wastewater. ok (s) Garg, S.K., "Environmental Engineering Vol. II", 24 th Edition, New Delhi, Khanna Punmia, B.C., Jain, A.K., and Jain.A., "Environmental Engineering, Vol.II", Lakshmi oublications, 2015.	<u>.</u>
UNI Aeth echn euse 'ext 1 2 efer	V SEWAGE DISPOSAL s - dilution - self-purification of streams - oxygen sag curve - wastewater reclamation tes - land disposal - sewage farming - deep well injection - eutrophication - recycle are wastewater. ok (s) Garg, S.K., "Environmental Engineering Vol. II", 24 th Edition, New Delhi, Khanna Punmia, B.C., Jain, A.K., and Jain.A., "Environmental Engineering, Vol.II", Lakshmi Publications, 2015.	<u>.</u>
UNI Aeth echn euse 'ext 1 2 efer 1	SEWAGE DISPOSAL s - dilution - self-purification of streams - oxygen sag curve - wastewater reclamation are sevage farming - deep well injection - eutrophication - recycle are wastewater. ok (s) Garg, S.K., "Environmental Engineering Vol. II", 24 th Edition, New Delhi, Khanna Publishers, 2018 Punmia, B.C., Jain, A.K., and Jain.A., "Environmental Engineering, Vol.II", Lakshmi oblications, 2015. ce (s) Duggal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 014. oonia, M.P.,Sharma, S.C., "Environmental Engineering", Khanna Publishers, 2018.	<u>.</u>
UNI Aeth echn euse 'ext 1 2 efer 1 2	 SEWAGE DISPOSAL a – dilution – self-purification of streams – oxygen sag curve – wastewater reclamation and the set – land disposal – sewage farming - deep well injection – eutrophication – recycle art wastewater. ok (s) Garg, S.K., "Environmental Engineering Vol. II", 24th Edition, New Delhi, Khanna Publishers, 2018 Punmia, B.C., Jain, A.K., and Jain.A., "Environmental Engineering, Vol.II", Lakshmi Publications, 2015. ce (s) 	
UNI Aeth echn euse Yext 1 2	SEWAGE DISPOSAL s - dilution - self-purification of streams - oxygen sag curve - wastewater reclamation are sevage farming - deep well injection - eutrophication - recycle are wastewater. ok (s) Garg, S.K., "Environmental Engineering Vol. II", 24 th Edition, New Delhi, Khanna Publishers, 2018 Punmia, B.C., Jain, A.K., and Jain.A., "Environmental Engineering, Vol.II", Lakshmi Publications, 2015. ce (s) Outgaal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 014. oonia, M.P.,Sharma, S.C., "Environmental Engineering", Khanna Publishers, 2018. fark J. Hammer, Mark J. Hammer Jr, "Water and Waste Water Technology" Prenticelelly	<u>.</u>

KARUR - 639 113 *

	Regul	ation	2018			5	Semes	ter				Total	lours	45
			G									Hours	Week	
Cat	egory	Cou	rse Co	ode		C	ourse	Name			L		r P	C
P	EC	180	CEE00:	5T	SUST			CONST IODS	RUCT	TION	3) 0	3
Prer	equisit	e Cou	rse (s)											
Cons	tructio	n Mate	erials a	nd Teo	chniqu	es								
Cour	se Ob	jective	e (s):Tl	ne purp	pose of	learni	ng thi	s cours	e is to:	e p				
1	Gain	ing kn	lowled	ge of t	he key	aspect	s of s	ustainal	ole cor	structi	on			
2	Obta	ining	knowle	edge of	f the ba	asic tec	hnolo	gies us	ed in s	ustaina	ible co	nstructi	on	_
3			the abi			ally sel	ecting	; energy	-effici	ient eco	ologica	l buildi	ng mater	als for
4			ding po on the e			f diffei	rent m	ethods	and to	ols for	estima	ting the	e influenc	e of
Cour	se Ou	tcome	(s) (C	Os):A	t the er	nd of th	nis cou	urse, lea	arners	will be	able to	o:		
CO1	Knov	w the p	princip	les and	l criter	ia of s	ustain	able co	nstruct	ion				
CO2	Basi	c techi	nologie	s and	basic n	nateria	ls use	d in sus	stainab	le cons	structio	n		
CO3	Iden	tify the	e suital	ole bui	lding n	nateria	ls for	sustain	able co	onstruc	tion			
CO4	Cond	cept of	Envir	onmen	t and E	Enviroi	nment	al Impa	ict Fac	tors co	nsideri	ng for	various p	ojects
CO5	Get t	he aw	are of	he ene	ergy ef	ficient	buildi	ings co	ncept					
CO-I	PO Ma	pping												
						1	POs						Р	SOs
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	-	л н. Н		1	1		1	-	5 6 5	1	2	1
CO2	3	2		=		1	1	×	1	π	85	1	2	1
CO3	3	2	ě.	R	-	1	1	-	1	line.	-	1	2	1
CO4	3	2		•	-	1	1	-	1	-	-	1	2	1
CO5	3	2	2	*	(*)	1	1		1	•	æ	1	2	1
CO	3.00	2.00	0.00	0.00	0.00	1.00	1.00	0.00	1.00	0.00	0.00	1.00	2.00	1.00

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

UNIT I INTRODUCTION

Fundamentals of Sustainable Construction Engineering –Sustainability and resources, need, present practices at national and international level, The Sustainability Quadrant– challenges and Issues, Government initiatives - Necessity and importance of sustainable construction materials.

UNIT II SUSTAINABLE MATERIALS

Recycled and reused products in sustainable construction - Advanced and smart materials and technologies in sustainable construction–Types of building materials for energy-efficient construction: an overview - Building materials for thermal insulation (Mineral and natural based composites, polymers, advanced materials, reflective materials) - Criteria for the selection of building materials for energy-efficient construction.

UNIT III CONSTRUCTION METHODS

Construction of conventional framed structure with block work walls - Modular construction methods for repetitive works - Precast concrete construction methods - Identification of cutting edge sustainable construction materials, technologies, and project management strategies for use in the construction industry and evaluation of their potential.

UNIT IV ENERGY EFFICIENT CONSTRUCTION

Concept of Environment and Environmental Impact Factors and area of consideration for Mega Projects such as Airports, Highways, Power Projects, Water Related Projects - 3E's Environmental Economics, Ethics and Ecology of sustainable development -Rules and regulations and Laws governing Energy Conservation in India and developed Nations.

UNIT V SUSTAINABLE MATERIALS APPLICATION

Examination of the current LEED for New Construction rating system, and case study analysis of highly successful recent "green construction projects" - Life Cycle Assessment (LCA) of building materials - Case studies of the application of sustainable building materials in energy efficient buildings.

Text Book (s)

 Charles J,Kibert "Sustainable Construction: Green building design and delivery", 4th Edition, 2017, Wiley India Pvt. Ltd.,
Amirtanshushukla, atul Sharma "Sustainability through Energy efficient buildings", 1st Edition, CRC press publisher, 2018.

Reference (s)

1 Godfrey Boyle, "Renewable Energy:Power for a Sustainable Future",Oxford University Press, 2004.

Curriculum and Syllabus | 2018 Regulation

9

9

9

9

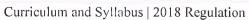
9

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilinadu,

I	Regula	tion 2018	Semester	То	otal Hou	rs	45
		Course		Ho	urs / We	ek	
Cate	gory	Code	Course Name	L	Т	Р	C
PE	C 18CEE012T		SOLID AND HAZARDOUS WASTE MANAGEMENT	3	0	0	3
Prere	quisite	Course (s)					
Enviro	onment	al Science and I	Engineering				
Cours	se Obje	ective (s):The p	urpose of learning this course is to:		1 20		
1	Unde	erstand the source	es, types and effects of solid waste.				
2	Knov	v about the stora	age containers and processing techniques for	or munic	ipal solic	l waste.	
3	Abili	ty to identify co	llection options for municipal solid waste a	and trans	fer proce	ess.	
4		rt Knowledge o ods through cas	on possible solutions to reuse and to de e studies	velop the	e dispos	al alteri	native
5	Knov	v about the class	sification of hazardous wastes and its storage	ge and di	sposal o	ptions.	
Cours	se Outo	come (s) (COs):	At the end of this course, learners will be a	able to:			
CO1		marize the char omic aspects	racteristics of solid waste and the effec	ts of so	lid wast	e public	c and
CO2	Ident	ify the storage c	containers and processing techniques for m	unicipal	solid wa	ste.	
CO3	Expla	ain how to ident	ify collection options for municipal solid w	vaste and	transfer	process	5.
CO4			e solution to reuse and energy managem hrough case studies and team-oriented tech				sposal
CO5	Identify and Classify the hazardous waste and know about storage and disposal options for hazardous wastes.						

CO-PO Mapping

COs							POs						PS	Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	•	-		1	1	17-1	-		-	1	2	1
CO2	3	2	-	-		1	1	-	-	÷	-	1	2	1
CO3	3	2		-		1	1	θ.	8	•	÷	1	2	1
CO4	3	2		-		1	1	-	×		-	1	2	1
C05	3	2	2.83	94		1	1	-	-	-	-	1	2	1
CO (Avg)	3.00	2.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	1.00	2.00	1.00


1: Slight (Low) 2: Moderate (Medium)

20

Approved Op

KARUR - 639 115

3: Substantial (High)

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilinadu.

9

9

UNIT I 9 FUNDAMENTALS OF SOLID WASTE MANAGEMENT Sources and types of solid wastes - Quantity - factors affecting generation of solid wastes; characteristics - methods of sampling and characterization; Effects of improper disposal of solid wastes - public health effects. Principle of solid waste management - social and economic aspects; Public awareness; Role of NGOs; Legislation. UNIT II **ONSITE STORAGE ANDPROCESSING** 9 On-site storage methods - Effect of storage, materials used for containers- segregation of solid wastes - Public health and economic aspects of open storage - waste segregation and storage-case studies under Indian conditions- source reduction of waste - Reduction, Reuse and Recycling. **UNIT III COLLECTION ANDTRANSFER** 9

Methods of Collection - analysis of collection system (HCS and SCS) - types of vehicles - Manpower requirement - collection routes - route optimization - preparation of master schedule - transfer stations - selection of location, operation and maintenance; options under Indian conditions.

UNIT IV OFFSITE PROCESSING ANDDISPOSAL

Processing techniques and Equipment; Resource recovery from solid wastes - sorting and separation - composting, incineration, Pyrolysis - options under Indian conditions- Dumping of solid waste; sanitary landfills - site selection, design and operation of sanitary landfills - Leachate collection and treatment.

UNIT V HAZARDOUS WASTES

Identification, classification of Hazardous waste-Source and characterization of hazardous waste – TCLP tests-Storage, labelling and handling of hazardous wastes-Hazardous waste manifests and transport-Waste minimization options-Disposal of Hazardous waste

Text Book (s)

1	Ganesaguru.S, "Municipal Solid Waste Management" AR publications, 2016.
2	Rao, M. N., et al. Solid and Hazardous waste management. BS Pubications, 2014.
	rence (s)
1	Government of India, "Manual on Municipal Solid Waste Management", CPHEEO, Ministry of Urban Development, New Delhi, 2000.

- 2 George Tchobanoglous and Frank Kreith" Handbook of Solid Waste Management", McGraw Hill, New York, 2002.
 - Bhide A.D. and Sundaresan, B.B. "Solid Waste Management Collection", Processing and Disposal, 2001.

R	Regula	tion 2	018				Semes	ter			r	'otal Ho	ours	45
	1.11	~	~								Н	ours / V	Veek	
Categ	gory	Cou	rse Co	ode		C	Course	Name	9		L	Т	P	C
PE	С	18C	EE013	BT 4	AIR A		DISE F CONT		JTION	AND	3	0	0	3
Prereg	juisite	Cour	se (s)											
Enviro	nment	al Scie	ence ar	nd Eng	ineerin	ng								
Course	e Obje	ective	(s): Th	ne purp	ose of	learnii	ng this	course	e is to:		*			
1	lmpa healt		wledg	e on tl	ne con	cepts o	of air p	oollutio	on and	its effe	cts on I	human a	and eco	system
2	Und	erstan	d the a	tmospl	heric p	rocess	and po	ollutan	t trans	port me	chanism	۱,		
3	Get S	Solutio	on to co	ontrol t	the maj	jor air	polluti	on.						
4		y moc space.	lelling	techni	iques a	and to	detern	nine th	ne fate	of air p	ollutan	t with r	espect t	o time
5	Αсqι	ire the	e Knov	vledge	ofnoi	se poll	ution a	and its	contro	1.				
Course	e Oute	come ((s) (CC	Ds): At	the en	id of th	is cou	rse, lea	arners	will be a	able to:			
CO1	Rela	te the	basic c	oncept	ts of ai	r pollu	tion ar	nd its e	effects	on hum	an and e	ecosyste	m healt	h.
CO2	Relate the basic concepts of air pollution and its effects on human and ecosystem health. Adopt interpretation of meteorological data for atmospheric stability and sampling of air pollutants													
CO3	Find	the m	ajor ai	r pollu	tion co	ontrol t	echnol	ogies						
CO4		pute n space	nodelli	ng tec	hnique	s and t	to dete	rmine	the fat	e of air	polluta	nt with 1	respect	to time
CO5	Anal	yse th	e effec	ts of n	oise po	ollution	n and i	ts cont	rol.					
CO-PO) Maj	pping	i ji											
60							POs			_			PS	Os
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	5 .			1	1	-	-	۲		1	l	1
CO2	3	2		*	-	1	1		÷-			1	1	-
	3	2		ũ.	-	1	1		4	-	-	1	1	1
CO3	U				-	1	1		-	-	-	1	1	1
CO3 CO4	3	2			Mar.									
		2	*			1	1	-		-		1	1	1

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

9

9

9

9

9

UNIT I INTRODUCTION

Classification of air pollutants - Particulates and gaseous pollutants - Sources of air pollution - Effects of air pollution on human beings, materials, vegetation, animals - Air pollution indices - Indoor Air Pollutants

UNIT II METEOROLOGY

Elements of atmosphere - Meteorological factors - Wind roses - Lapse rate - Atmospheric stability and turbulence - Plume rise - Dispersion of pollutants - Gaussian plume Dispersion models -Applications.

UNIT III CONTROL OF PARTICULATE ANDGASEOUS CONTAMINANTS

Concepts of control - Principles of control measures - Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation - Selection criteria for equipment - gaseous pollutant control by adsorption, absorption, condensation, combustion -Pollution control for specific major industries.

UNIT IV AIR QUALITY SAMPLING AND MODELLING

Stack sampling- instrumentation and methods of analysis of gases- Analytical methods-Air pollution legislation and regulations- Legal Requirements based on Tamil Nadu – Impact of Novel Corona Virus 2019 - Case Studies.

UNIT V NOISE POLLUTION ANDCONTROL

Sources and Effects of Noise Pollution – Measurement – Standards – Control and Preventive measures – Case Studies.

Text Book (s)

- 1 Rao .C.S, Environmental pollution control engineering, New Age International, 2007.
- 2 Rao M N and Rao H V N., Air Pollution, McGraw Hill Education(India) Private Limited., New Delhi, 2016.

Reference (s)

1	Lawrence K.Wang, Norman C Pereira, Yung-Tse-Hung, 'Air Pollution Control Engineering', Springer, 2004.
2	De Nevers, Noel. Air pollution control engineering. Waveland press, 2010.

2

CO5

СО

(Avg)

3

3.00

2

2.00

0.00

Ray

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

Re	egulati	on 201	8			Se	emeste	r_			r	'otal Ho	ours	45
		Cou	rse				117			1	Н	ours / V	Veek	-
Catego	ory	Coo				Co	urse I	Name			L	Т	P	C
PEC	c i	I 8CEE	014T		II			L WAS MENT			3	0	0	3
Prerec	quisite	Cours	e (s)						1	1. 18	*	2.12		1
Enviro	onmenta	nl Scier	nce an	d Engi	neerin	g								
Cours	e Obje	ctive (s): The	e purpo	ose of	learnir	ng this	course	e is to:				T-I-	i.
1	Know	about	the Ch	aractei	istics,	Effect	ts and	Envirc	nment	tal Legi	slation	of Indus	strial wa	istes.
2	Ability	/ to pla	in mini	imizati	on of	industi	rial wa	stes						
3	Ability	to des	sign fa	cilities	for th	e proc	essing	and re	eclama	tion of	industri	al waste	e water	
4	Ability to design facilities for the processing and reclamation of industrial waste water Impart knowledge on the Treatment Technologies in Industrial.													
5	Know	about	the cla	ssifica	tion of	hazar	dous v	vastes	and its	s storage	e and di	sposal c	options.	
Cours	e Outc	ome (s	s) (CO	s): At	the en	d of th	is cou	rse, lea	Irners v	will be a	able to:			
CO1	Infer tl	ne char	racteris	stics of	Indus	trial W	Vaste a	ind the	ir imp	act at th	e surro	undings		
CO2	Summ	arize c	leaner	produ	ction t	echniq	ues fo	r reuse	e, recyc	cle and	recover	У		
CO3	Analys	se the c	charact	eristic	s of w	astewa	ter fro	om maj	or Ind	ustries a	and thei	r reclan	nation c	oncept
	Recogn Waster		ne app	ropria	te trea	itment	and o	disposa	al met	hod ba	sed on	the cha	aracteri	stics o
CO5	Specif	y Haza	rdous	waste	and id	entify	suitab	le treat	ment 1	techniqu	ies			
CO-PO	О Мар	ping												
60							POs						PS	SOs
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	449	1	1	244	-	5 2 5.	-	1	1	3 9 33
CO2	3	2			÷	1	1		â		-	1	1	1
CO3	3	2		-	-	1	1	. 	-	-	-	1	1	:#/
CO 4	3	2	-	-	÷	1	1	~	-	-	-	1	1	1

1: Slight (Low) 2: Moderate (Medium)

0.00

0.00

Approved On

1

1.00

1

1.00

3: Substantial (High)

0.00

1

1.00

1

1.00

Curriculum and Syllabus | 2018 Regulation

0.00

0.00

0.00

1

1.00

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

9

9

9

9

9

UNIT I INTRODUCTION

Types of industries and industrial pollution – Characteristics of industrial wastes – Population equivalent – Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes

UNIT II CLEANER PRODUCTION

Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and by-product recovery – Applications.

UNIT III | POLLUTION FROM MAJOR INDUSTRIES

Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants – Wastewater reclamation concepts.

UNIT IV TREATMENT TECHNOLOGIES

Equalisation – Neutralisation – Removal of suspended and dissolved organic solids - Chemical oxidation – Adsorption - Removal of dissolved inorganics – Combined treatment of industrial and municipal wastes – Residue management – Dewatering – Disposal.

UNIT V

HAZARDOUS WASTE MANAGEMENT

Hazardous wastes-Sources and Classification- Collection and Segregation - Physical chemical treatment – solidification – incineration – Secure landfills- Regulatory aspects – Control measures

Text Book (s)

1	Rao, M. N. Waste water treatment. Oxford and IBH Publishing, 2018.
2	Patwardhan. A.D., Industrial Wastewater Treatment", Prentice Hall of India, New Delhi 2010.
3	Eckenfelder W.W. Jr., "Industrial Water Pollution Control", McGraw Hill Book Company, New Delhi, 2000.

Reference (s)

Freeman H.M., "Industrial Pollution Prevention Hand Book", McGraw Hill Inc., New Del	1	Stephenson, Ralph L., and James B. Blackburn Jr. The industrial wastewater system handbook. CRC Press, 2018.
1993.	2	Freeman H.M., "Industrial Pollution Prevention Hand Book", McGraw Hill Inc., New Delhi 1995.

3 Bishop, P.L., "Pollution Prevention: Fundamental and Practice", McGraw Hill, 2000.

1	Regula	tion 2	018				Semo	ester_				Total	Hours	45
		C	ourse	100	- 21 2			1		1217		Hours	/ Week	
Cate	gory		Code				Cour	se Nai	ne		L		Г Р	C
PI	EC	180	EE024	4T	ENV				MPAC MENT	T AND	3		0 0	3
Prerc	equisit	e Cou	rse (s)											
Envir	onmer	ital Sc	ience,	Enviro	onmen	tal Eng	gineeri	ing I, I	Enviro	nmental	Enginee	ring II		
Cour	se Obj	jective	e (s):T	he pur	pose o	f learn	ing th	is cour	se is to	o:				
1	Stuc	ly the	curren	t EIA :	metho	ds, tec	hnique	es and	tools u	ised				
2		te awa rol Ac		e Envi	ronme	ntal in	npact	due to	vario	us pollu	itants ar	d their	prevent	on and
3	Und	erstan	d aboı	ıt envi	ronme	ntal m	anagei	ment p	lan an	d its imp	bact			
4	Stuc	ly the	curren	t envir	onmei	ntal mo	onitori	ng sys	tems					
5	Und	erstan	d aboı	ıt envi	ronme	ntal ar	ıd risk	assess	ment					
Cour	se Out	lcome	(s) (C	Os):A	t the e	nd of	his co.	urse, l	earner	s will be	able to:			
CO1		-	t scoj essmer	-	and s	creeni	ıg of	deve	lopme	ntal pro	ojects f	or env	ironment	al and
CO2			erms c ent pro		rence	for er	vironi	nental	impa	ct and s	socio-eco	onomic	impact	for any
CO3	Prep	pare th	e envi	ronme	ntal m	anage	ment p	olan an	d its v	arious in	npact m	itigatio	1	
CO4	Prep	oare th	e Envi	ironme	ent auc	lit repo	ort dev	elopm	ent pro	ojects				
CO5	Des	cribe t	he leg	al requ	iireme	nts of	enviro	nment	risk a	ssessme	nt and it	s evalua	ation mea	sures
CO-F	PO Ma	pping						1		60.4	1.0			
COs							POs			i'	1		PS	SOs
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-			1	1	Π.	-	•	2.5	1	2	1
CO2	3	2	-			1	1	-	-	-	5 * 2	1	2	1
CO3	3	2	+	:=)		1	1	7.	*:		8 9 .	1	2	1
CO4	3	2	+	-	÷	1	$-1_{\rm H}$	~	-	-	80	1	2	1
CO5	3	2	-			1	1	-	-	+		1	2	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

COLLEGE OF ENGS Board of Civil Eng HOHOL

oved Un

KARUR - 639 413

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

9

9

9

9

9

UNIT I INTRODUCTION

Environmental Impact Assessment (EIA)- Need for Environmental Impact Assessment (EIA) -Environmental Impact Statement (EIS) - Environmental Risk Assessment (ERA) - Legal and Regulatory aspects in India - Types and limitations of EIA -Issues in EIA - Social and cultural, Impact of development projects – Sustainable development- EIA capability and limitations – Legal provisions on EIA-Stages of EIA- Types of EIA

UNIT II ENVIRONMENTAL IMPACTS AND ITS ACTS

Environmental Impacts- positive and negative environmental impact assessment- steps of doing EIA- methodology adopted -EIA procedure in India -Types of pollutants- The Environment (Protection) Act - Water (Prevention and Control of Pollution) Act , The Air (Prevention and Control of pollution) Act

UNIT III ENVIRONMENTAL MANAGEMENT PLAN

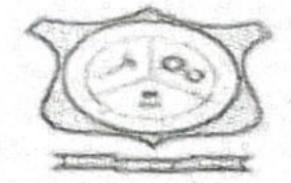
Plan for mitigation of adverse impact on environment – options for mitigation of impact on water, air and land, flora and fauna–Addressing the issues related to the Project Affected People – ISO 14000

UNIT IV ENVIRONMENTAL AUDIT

Objectives of Environmental Audit, Types of environmental Audit, Audit protocol, stages of Environmental Audit, onsite activities, evaluation of Audit data and preparation of Audit report, Post Audit activities - EIA 2020

UNIT V RISK ASSESSMENT

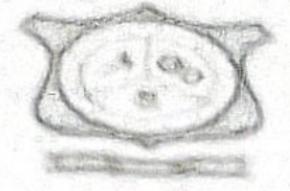
Environmental risk assessment frame work – hazard identification – dose responses evaluation – exposure assessment – exposure factors – tools – HAZOP and FEMA methods – Risk characterization – risk communication – emergency preparedness plan


Text Book (s)

- 1 A K Srivastava, Environment impact Assessment, APH Publishing, 2014
- 2 John Glasson, Riki Theriveland S Andrew Chadwick "Introduction to EIA" University College London Press Limited, 2011
- 3 Shukla, S.K. and Srivastava, P.R., "Concepts in Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.

Reference (s)

1	Shukla, S.K. and Srivastava, P.R., "Concepts in Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.
2	J. Petts, Handbook of Environmental Impact Assessment Vol. I and II, Blackwell Science, London, 1999.
3	John G. Rau and David C Hooten "Environmental Impact Analysis Handbook", McGraw Hill Book Company, 1990.


M.KUMARASAMY COLLEGE OF ENGINEERING

MAAC Accreditors Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

The films the	Regula	tion 20)18				Seme	ster				Total H	ours	45
~ .												Hours /	Week	C
Cate	gory	Cou	rse Co	de			Course	e Name			L		T I	
C		18E	ECC302	2 T				AND V GATIO			3		0 0) 3
Prereg	uisite (Course	: (\$)											
Electro	omagne	etic Fi	elds, T	ransmi	ssion l	Lines a	nd wa	veguid	es					
Cours	e Objec	ctive (s):The p	urpose	of lear	ning thi	s cours	e is to:						
1	Unde	erstandi	ing the	working	g princi	ples of	antenn	a and p	erforma	ance of a	ntenna a	rrays.		
2	Desc	ribe the	e applic	ation of	f all typ	es of a	ntennas	.					en de la de Figure Participa de	
3	Reco	gnize t	he diffe	erent typ	bes of p	oropaga	tion of	radio w	aves at	differen	t frequer	ncies.		
Cours	e Outco	ome (s)	(COs)	:At the	end of	this cou	urse, lea	arners v	vill be a	able to:				
CO1	Utiliz	tilize the concept of antenna parameters in the working principle. (K3)												
CO2	Solve	olve the radiation fields of various antennas (K3)												
CO3	Categ	tegorize the various types of Antennas. (K4)												
CO4	2.9 Jan Cathering	- Prestore and the	and the second states of	New York Charles Report	the second state of the second state	and the second sec		De la constantina de						
COS	Anal	yze the	various	s types	of wave	e propa	gation i	in differ	ent lay	ers of ati	nospher	e.(K4)		
CO5	수준도 그는 방법은 것 같은 것이 안 수 없는 것 같은 것													
) Map	ping				and have a finality which have a	Service States and the service services							2615 2015 2015 2015 2015 2015 2015 2015 20
CO-P) Map	ping					POs						PS	Os
	D Mapi		PO3	PO4	PO5			PO8	PO9	PO10	PO11	PO12		1.
CO-P			PO3 2	PO4	PO5			PO8	PO9	PO10	PO11 -	PO12 -		1.
CO-PO			PO3 2 2	P04 -	P05 -			PO8 1	PO9 1	PO10 -	PO11 -	PO12 -		1.
CO-PO			PO3 2 2	P04 -	PO5 -			PO8 1 -	PO9 1 -	PO10 -	PO11 -	PO12 -		1.
CO-PO COs CO1 CO2			PO3 2 2 2	PQ4	P05 -			PO8 1 -	PO9 1 -	P010 -	PO11 -	PO12 - -		1.
CO-PO COs CO2 CO3			PO3 2 2 2 2	P04				1	PO9 1 -		PO11 -	P012 -		PSO2 3 3

UNIT I

MINUMARASAMY COLLEGE OF ENGINEERING MANAGEMENT AND THE COMMENSATION MATCHING THE SET OF THE SET OF

9

9

9

9

9

ANTENNA FUNDAMENTALS

Basic antenna parameters: Radiation patterns, Beam solid angle, Radiation intensity- Directive gain-Directivity- Power gain- Beam Width-Gain, Effective aperture, Antenna field zones, Reciprocity principle- Relation between Effective length and Effective area. Retarded vector potential, Fields

associated with Hertzian dipole- Power radiated and radiation resistance of current element.

UNIT II

WIRE ANTENNAS AND ANTENNA ARRAYS

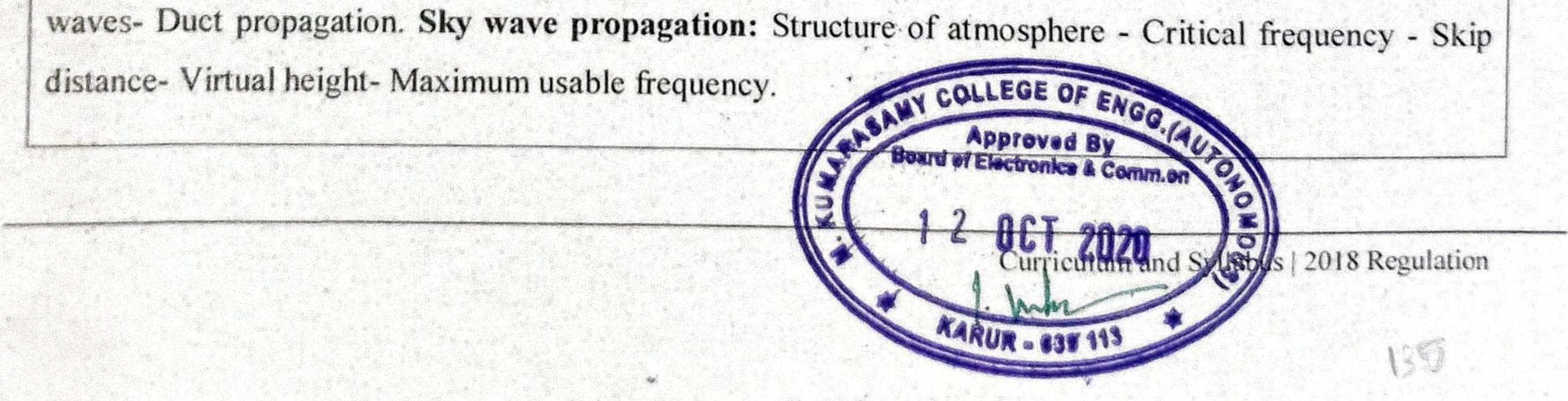
Radiation from half-wave dipole and quarter-wave monopole antennas, Folded dipole. Antenna Arrays: Expression for electric field from two and N element arrays linear arrays: Broad-side array and End-Fire array- Method of pattern multiplication-Binomial array- Horizontal and Vertical antennas above the ground plane.

UNIT III

ANTENNA TYPES

Loop Antennas: Radiation from small loop and its radiation resistance- Radiation from a loop with circumference equal to a wavelength- Helical antenna: Normal mode and axial mode operation- Log periodic antenna- Horn antenna- Yagi-uda Antenna- Reflector antennas: Parabolic reflectors and their

feed systems.

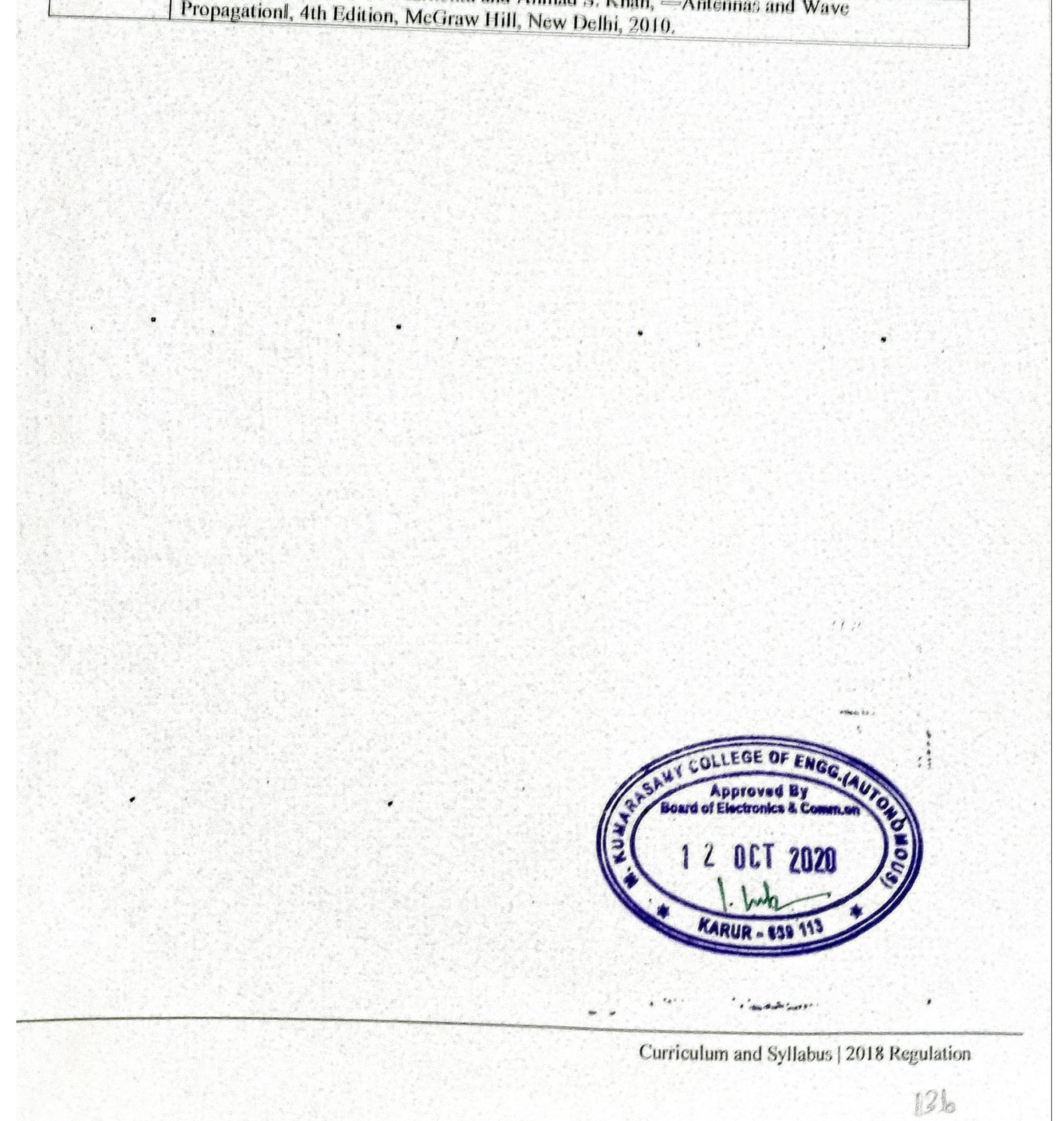

UNIT IV SPECIAL ANTENNA AND ANTENNA MEASUREMENTS

Microstrip antenna: Feeding Methods- Rectangular Patch. Special Antenna: Plasma Antenna, GPR, UWB and Wearable antennas. Antenna Measurements: Measurement of different Antenna parameters: Directional pattern, Gain, Phase, Polarization, Impedance, Efficiency.

UNITV

PROPAGATION OF RADIO WAVES

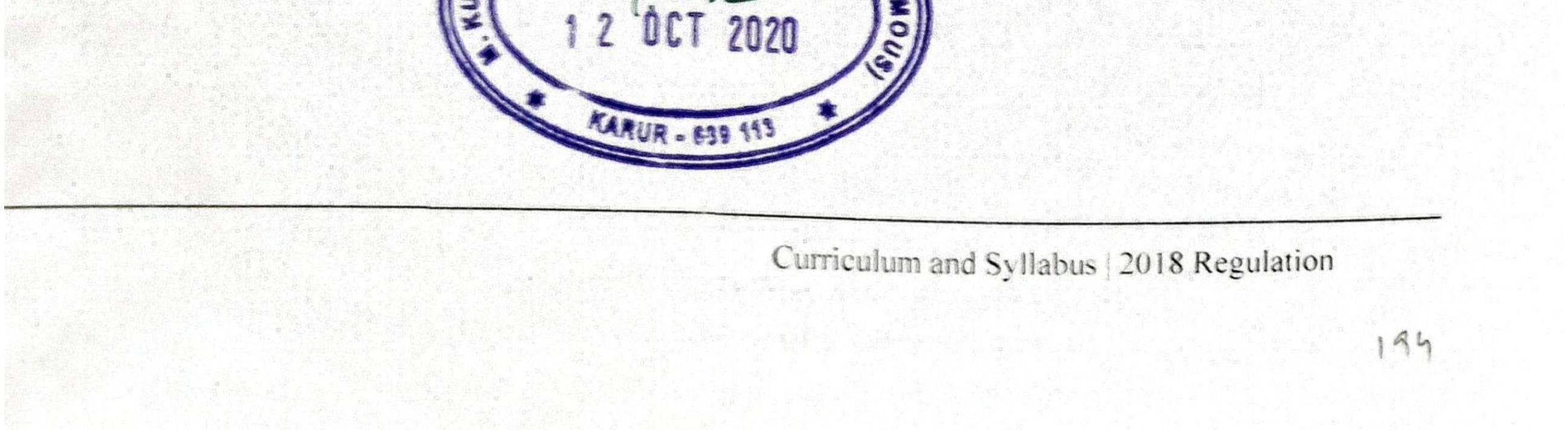
Ground wave propagation: Calculation of field strength at a distance- Flat earth and Curved earth concept. Space wave propagation: Reflection from ground for vertically and horizontally polarized waves. Duct propagation. Sky wave propagation: Structure of starts of

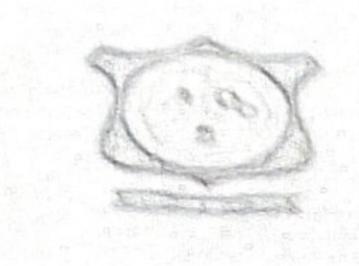




M.KUMARASAMY COLLEGE OF ENGINEERING MAACACOUNT AMERICAN ENTRY APPROXIMITE AMERICAN AND A LOW AND APPROXIMITE CONTRACT OF AND A LOW AND THE AND CONTRACT OF A DESCRIPTION THE AND A DESCRIPTION AND A DESCRIPTION THE ADDRESS OF A DESCRIPTION AND A DESCRIPTION A DESCRIPTION A DESCRIPTION AND A DESCRIPTION A DESCRIPTON A DE

Text Boo	k (6)
1	Constantine A. Ballanis, "Antenna Theory: Analysis and Design", John Wiley and Sons, Third Edition, 2016.
2	Prasad K.D., "Antennas and Wave Propagation", 3rd Edition, Satya Prakashan Publications, New Delhi 2013.
Reference	(s)
1.	G.N.S. Raju, "Antennas and Wave Propagation" M. G.
2.	G.N.S. Raju, "Antennas and Wave Propagation", McGraw-Hill, 4th Edition, 2010 Jordan E.C and Balmain, "Electro Magnetic Weight and the Hill, 4th Edition, 2010
3.	Jordan E,C and Balmain, "Electro Magnetic Waves and Radiating Systems", PHI, Reprint 2011 John D, Kraus, Ronald J Marhefka and Ahmad S. Khan, —Antennas and Wave




M.KUMARASAMY COLLEGE OF ENGINEERING

Autor for the substant of the sector and the sector of the sector Approximate the second a Alternative an Article Alternative CRED ADDN 2TDD 5 Contractor Constitutions Theirschelleyem, Kerch Temilhedo.

	Regu	lation 2	2018			Sei	mester	·			Fotal H			60
Cat	tegor		Cours	e		Cor	irse N	ame		H	lours /	Week	D	С
			Code			Cut				L		1	r	
	E	18	SECE0	21J		IBER MMUN	and the a building			3		0	2	4
Prere	equisi	te Cour	se (s)											
Anal	og coi	nmunik	cation,	Digita	l com	nunica	tion							-
Cour	se Ob	ojective	(s):Th	e purp	ose of	learnii	ng this	course	e is to:					
1	S	tudy ab	out the	e vario	ous opt	tical fib	er mo	des, co	nfigura	ation of	optica	l fibers		
2	A	nalyze	the sig	nal de	gradat	tion fac	tors e	oupled	with o	ptical fi	ber			
3		earn th stem	ie vario	ous opt	tical so	ource a	nd pho	otonic	erystal	in the o	ptical	commu	inicatio	n
4	E	xamine	e the op	tical r	eceive	rs and	their u	ises						
5		liseuss a	ibout d	ligital	transn	nission	and it	s relate	ed para	meters	on sys	tem pe	rforma	nce
Cour	se Ou	itcome ((s) (CO	s): At	the en	id of th	is cou	rse, lea	rners v	vill be a	ble to:			
CC)1	Experi configu				c eleme	ents in	optica	l fibers	, differe	nt mo	des and	1	
CC	22	Make	use of t	he sig	nal de	gradati	ion fac	tors in	optica	l fibers	(K3)			
CC	>3	Catego	orize th	e char	acteri	stics of	Optic	al Sou	rces (K	4)		an in the second se	n de la companya de la compa	
CO	ne ne de	Identif						and the second second	and the second					
CO)5	Apply	the dig	ital tr	ansmi	ssion sy	stem i	in Opti	cal Co	mmunio	ation	(K3)		
CO-P	°O Ma	apping												
COs						F	20 5				an a ciù		PS	Os
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
COI	3	3	1	1	2				3				3	2
CO2	3	3	1		2				3				3	2
CO3	3	3	1		2				3				3	2
CO4	3	3	1		2		0 0 0 0	1	3	1			3	2
CO5	2	3			2			1	3	1			3	2
co	2.8	3	1	1	2			1	3	1			3	2
Asg	ALC P. LANCE	Low)			7. 140	derate (11.11					stantial	La construction de la construction	1

UNIT II

M.KUMARASAMY

Approved by Att H & Ambanch to Ambanbackuty (50.000) 2013 Contractionation Thatavapatayam, Kamir, Tamiloada.

9

9

9

9

.

UNIT1INTRODUCTION TO OPTICAL FIBERS9Elements of an Optical fiber Transmission link - Ray theory transmission - Total internal reflection.Acceptance angle, Numerical Aperture, Optical Fiber Modes and Configurations- skew rays-Modetheory of circular wave guide - Overview of Modes, Key Modal Concepts-Linearly Polarized Modes-Single Mode Fibers, Graded Index fiber structure

SIGNAL DEGRADATION IN OPTICAL FIBERS

Attenuation -Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Wave guides-Information Capacity determination-Group Delay-Material Dispersion, Wave guide Dispersion, ISI, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling Design Optimization of SM fibers, RI profile and cut-off wavelength-Mode filed Diameter

UNIT III

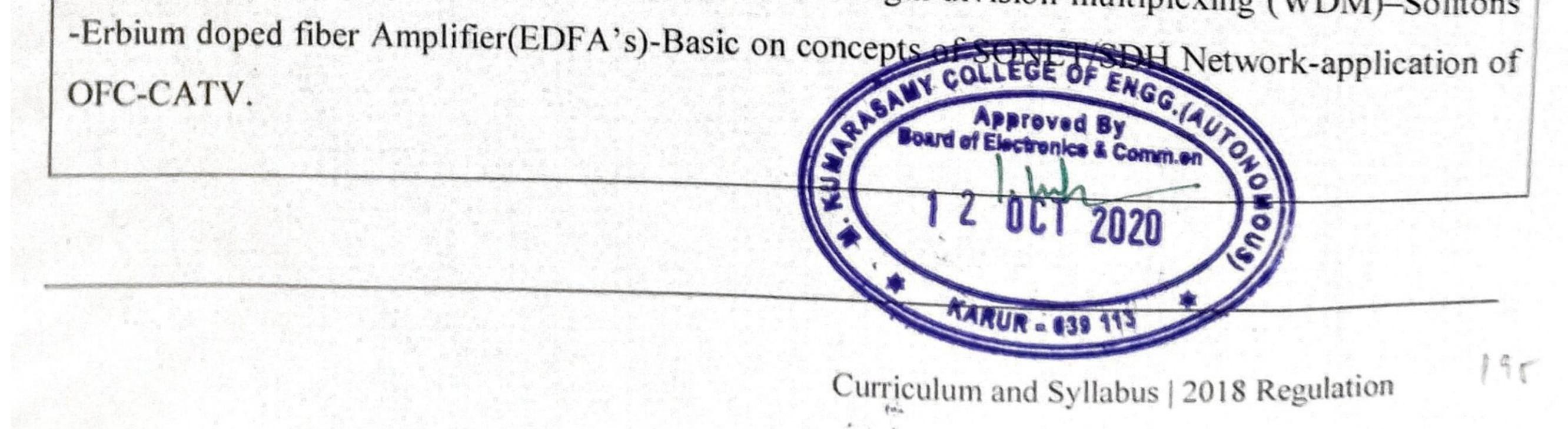
OPTICAL SOURCES AND PHOTONIC CRYSTAL

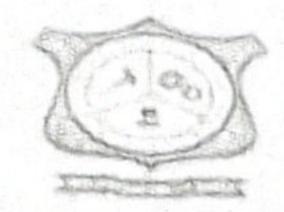
LED's- Modulation Of LED, Quantum efficiency and LED power, LASER Diodes: Modulation of LASER diodes -Rate equations -External Quantum efficiency -Temperature effects -Power Launching and Coupling: Source to fiber power launching - Lensing Schemes for Coupling improvement - Fiber Optical Sources and Coupling - Fibre- to-Fibre joints - Fibersplicing. Principle of Photonic crystal, Guidance mechanism: Index guiding PCF, Photonic band gap PCF, All solid

photonic Bandgap PCF, Hybrid PCF, Applications Of PCF in sensing.

UNIT IV

.


FIBER OPTICAL RECEIVERS


PIN Photo detector -Schottky -Barrier Photodiodes - Avalanche Photodiodes - Photo detector noise -Detector response time - Avalanche multiplication of Noise-Temperature effects on Photo Detectors-Phototransistors -Fundamental Receiver operation-preamplifiers-Error Sources-Receiver configuration -Probability of error-Quantum limit

UNIT V

DIGITAL TRANSMISSION SYSTEMS

Point to point link systems considerations -Link Power budget-Rise time budget-Noise effects on system performance - Operational principles of Wavelength division multiplexing (WDM)–Solitons -Erbium doned fiber Amplifier(EDEA's). Pasis

M.KUMARASAMY LEGE OF ENGINEERING

MAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University (50 9801 2015 Contined Institution Thalavapalayam, Karur, Tamilnadu.

LIST OF EXPERIMENTS

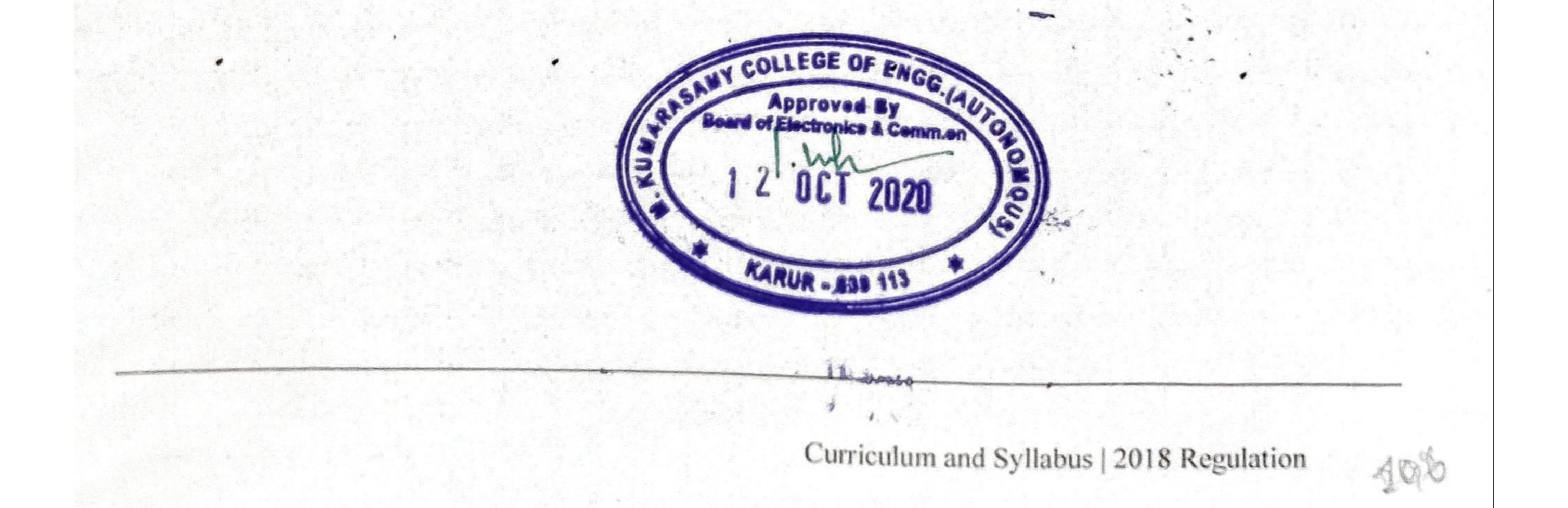
1. Measurement of Numerical Aperture and Coupling efficiency (Angular and Lateral) in Optical Fiber.

2. Attenuation losses and Bending losses in single mode optical fiber.

3. DC Characteristics of LED Diode.

4. DC Characteristics of LASER Diode.

- 5. DC Characteristics of PIN Diode.
- 6. Study of Data Communication using Single Mode Fiber Optic System.
- 7. Pulse Width Modulation and Demodulation using fiber optic System.
- 8. Transmission of different wavelengths using WDM and De-Multiplexing.
- 9. Transmission and Reception of TDM signals using fiber optic System.


10. Eye pattern measurement.

Text Book (s)

- Gerd Keiser, "Optical Fiber Communication", Fifth Edition, Tata Mc Graw Hill, 2007.
- John M. Senior, "Introduction to Optical Fiber Communications", Pearson / Prentice Hall 2

Reference (s)

1	Palais, "Fiber optic communications", Fifth Edition, Pearson, 2005
2	Agarwal.G.P, "Fiber Optic Communication systems", Second Edition, John Wiley & Sons, NY, 1997.
3	Harry J.R Dutton, "Understanding Optical Communications", IBM Corporation, International Technical Support Organization.
4	J.Gower, "Optical Communication System ", Prentice Hall of India, 2001.

$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	18) site Con ng Thern bjectiv impart impart tomobile provide d suspen impart	nodyna e (s): knowle ver sour knowle es. knowle sion sy knowle	dge on ce. dge on edge or stem in	Fluid I the prin the wor	ГОМС Mechar	BILE	-	NEER)	ING	L 3		s / We Γ 0	ek P 2	- C
C Prerequi Engineeri Course (> To er > To au > To ar > To Course (18) site Con ng Thern bjectiv impart impart tomobile provide d suspen impart	MEC3(urse (s) modyna e (s): knowle ver sour knowle es. knowle sion sy knowle	dge on ce. dge on edge or stem in	Fluid I the prin the wor	ГОМС Mechar	BILE	ENGII d Mach	NEER)	ING					
Prerequi Engineeri Course (> To er > To au > To ar > To Course (site Con ng Thern bjectiv impart gine pov impart tomobile provide d suspen impart	urse (s) nodyna e (s): knowle ver sour knowle es. knowle sion sy knowle	dge on rce. dge on edge on stem in	Fluid I the prin the wor	Mechar	nics an	d Macł	inery	ING	3	1.5 5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	0	2	4
Engineeri Course (> To er > To at > To ar > To Course (bjectiv impart gine pov impart tomobile provide d suspen impart provide	nodyna e (s): knowle ver sour knowle es. knowle sion sy knowle	dge on rce. dge on edge on stem in	the prin the wor	nciples		-		an a					
Course (> To er > To au > To ar > To Course (bjectiv impart gine pov impart tomobile provide d suspen impart provide	e (s): knowle ver sour knowle es. knowle sion sy knowle	dge on rce. dge on edge on stem in	the prin the wor	nciples		-		j		2 8 2	-	1	
 To er To at To ar To course C	impart gine pov impart tomobile provide d suspen impart provide	knowle ver sour knowle es. knowle sion sy knowle	dge on edge on stem in	the wor		of oper	ation a	(⊈ (K) (A -}	The state		2 8.1	-	a Catal	
$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	impart tomobile provide d suspen impart provide	knowle s. knowle sion sy knowle	dge on edge on stem in	the wor		of oper	ation a	a second in			2,2,14		East inter	
$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	impart tomobile provide d suspen impart provide	knowle s. knowle sion sy knowle	dge on edge on stem in	the wor				nd cons	truction	nal deta	ils of v	arious	automo	bile
> To ar > To > To Course C	provide d suspen impart provide	knowl sion sy knowle	stem in	the ree		f fuel s								
> To > To Course (impart provide	knowle	stem in	wals !. I	quireme	ent and	functio	n of va	rious co	ompone	ents in 1	ower t	ransmi	ssion
> To Course (provide	1.1	dge on		e.					4				
Course (P 10 1020	advand			and the second						und 1		_	
		auran	ce autor	notive	driving	contro	1.		100					
CO1 Ex	utcome	e (s) (C	Os):	2.6									15/626	e se se
po po	plain th wer sou	e opera rce.	ating p	rinciple	es and	constr	uctiona	l detai	ls of v	arious	autom	obile e	ngine	
red	ntify th uiremen	nts.												the
CO3 Ar	alyze th nicle.	e func	tion of	variou	is com	ponent	s in tra	nsmis	sion an	d safe	ty driv	ing lin	e of a	
CO4 Ex	plain the	e emiss	sion co	ntrol to	echniq	ue and	its imp	oortand	ce.					
CO5 Ar	alyze th	e adva	nce au	tomoti	ve driv	ving m	ethods.							
CO-PO N	lapping	;		1.								Tradit in		1
					P	Os		-12000 - 201	General And	territorio.	(金祖/17)	1000	PSOs	
COs POI	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1 3	2	1	3	-	1		3	2	2	•	3	3		2
CO2 .3	2	2	2	-	2		2	2	2	-	3	3	-	2
CO3 3	2	3	2	-	1	-	2	2	2		3	3	-	-
CO4 3	2	3	2	-	3	3	2	2	2		3	3	-	1
CO5 3	3	2	2	-	1	2	2	2	2	-	3	3	-	1
COAvg) 3 Avg) 3 SUSTAN COL Board o	2.2	2.2	2.2	•	1.6	2.5	2.2	2	2		3	3		1.5
UY COL	LEGE	HERE	QW)		2: Mode	erate (N	Aedium)	3: 5	Substan	tial (Hi	gh)		

-12-

	TI	VEHICLESTRUCTUREAND ENGINES	9
diffe	erentlayouts, o	iles, Automotive components, sub systems and their positions, vehicleconstructio chassis, frame and body, resistances to vehicle motion and aerodynamics of veh utomobile engine power source.	n and icles.
UNI	TII	ENGINEAUXILIARYSYSTEMS	9
engii syter Dash	ne- superchai m (General el 1 board instru	type and working principles- Electronic fuel injection system for petrol and d rging and turbo charging. Review of cooling and lubrication system. Elect ectrical circuits. Battery, Starting motor, DC generator, Alternator, Ignition cir- umentation, Lighting system) and electronics system - Ignition system (Mag c type). Electronic engine management system.	trical rcuit.
	тш	TRANSMISSIONSYSYTEMS	9
and	tyres -	onstruction, gearboxes- manualandautomatic, Wheel drive components, Steeringgeometry ,PowerSteering, Front and Rear Axle-Susper Systems- ABS and electronic brake force distribution (EBD).Stabilizer, Air Ba	ension
UNI	TIV	EMISSION CONTROL AND ALTERNATIVEENERGYSOURCES	9
Iueis	acteristicsofS	and Bharat standard – Non exhaust and exhaust emission (SCR).Useofalter utomobiles -Enginemodificationsrequired–Performance a n d Comb landClengineswiththesealternatefuels. ADVANCES IN AUTOMOTIVE TECHNOLOGY	
engin	nes. Autonom	dVehicles,Fuel Cell. Advanced driving controls – Electronic Stability Pr control system (TCS), Hill hold control, automatic climate control. Fuel ous driving – Google car-GPS Technology.	
Fext	Book (s)		2
1	Kirpal Sing		
1		h, "Automobile Engineering Vol. 1& 2", Standard Publishers, 7th Edition 20	012
2	and the second se	ch, "Automobile Engineering Vol. 1& 2", Standard Publishers, 7th Edition 20 Crouse, Donald L Anglin, Automotive Mechanics, 10th Edition, McGraw-Hill,	
2	and the second se	ch, "Automobile Engineering Vol. 1& 2", Standard Publishers, 7th Edition 20 Crouse, Donald L Anglin, Automotive Mechanics, 10th Edition, McGraw-Hill,	
2	William. H.	Crouse, Donald L Anglin, Automotive Mechanics, 10th Edition, McGraw-Hill,	
2 Refer	William. H. rence (s) Ganesan V. Jain,K.K.,an Delhi,2002	Crouse, Donald L Anglin, Automotive Mechanics, 10th Edition, McGraw-Hill, ." Internal Combustion Engines", Third Edition, Tata Mcgraw-Hill, 2007 nd Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, N	2017.
2 Refer	William. H. rence (s) Ganesan V. Jain,K.K.,an Delhi,2002 Julian Happ	Crouse, Donald L Anglin, Automotive Mechanics, 10th Edition, McGraw-Hill, ." Internal Combustion Engines", Third Edition, Tata Mcgraw-Hill, 2007	2017.
2 Refer 1 2	William. H. rence (s) Ganesan V. Jain,K.K.,ar Delhi,2002 Julian Happ Automotive	Crouse, Donald L Anglin, Automotive Mechanics, 10th Edition, McGraw-Hill, ." Internal Combustion Engines", Third Edition, Tata Mcgraw-Hill, 2007 nd Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, N bian-Smith "Introduction to Modern Vehicle Design" Publisher: Society of	2017.

÷

]	Regula	ation 2	018		Ser	nester	\mathbf{V} / \mathbf{V}	I / VII	/ VIII			Total]	Hours	1.5	45
Cat		6					K. 7			3.1	H	lours	Weel	K	C
Cate	gory	Cour	rse Coo	le		Co	ourse	Name			L	1	r	P	С
E	3	18M	EE011	T	REN	VEWA	BLE S ENER		CES O	F	3	()	0	3
Prere	quisit	e Cour	rse (s)		i der	100	1014		1.1					a 1	
Nil															
Cour	se Ob	jective	(s):	ar starte			Nalsaus			100 C					
2	To u	indersta	and the	solar	energy	resour	se and	applic	ation						-
>	To i	dentify	with W	Wind e	nergy o	conver	sion in	to pov	ver			5			
2	To a	nalyze	the Bi	io ener	gy gen	eration	n and u	tilizati	on	1.1		_			
>	To	discove	er the u	tilizati	on and	l enviro	onmen	tal mer	its pat	tern of	renew	able en	nergy r	esourc	es
` >	To	new d	levelop	ment	of ne	w sust	ainabl	e ener	rgy m	ethodo	logies	/ tec	hnolog	ies fo	r its
	utili	zation													
Cour	se Ou	tcome	(s) (CC	Os):	5.2		1-	8		1.5	il.	7		10.16	i di la
COI	Expl	ain sol	ar radia	ation, o	compo	nents a	nd app	olicatio	ns of I	V sys	tems				
CO2	Illus	trate th	e wind	energ	y conv	ersion	systen	1s, stor	age sy	stems	and ap	plicatio	ons		
CO3	Clas	sify the	e Bio e	nergy t	echno	logy ar	nd its u	tilizati	on						
CO4			e princi			onents	ofOl	TEC, T	idal, C	eother	mal ar	nd Hyd	el Ene	rgy so	urces
CO5	Illus		he Hy			eration	, Stor	age, T	ranspo	ort and	d app	lication	ns and	l Fuel	cel
CO-F	PO Ma	pping	143		111					11.01	1				
						PC)s	1.1				2	1	PSOs	
COs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
COI	3	1	1	-	1	2	3	1			-	1	1		-
CO2	3	2	1	•	-	2	3	1	•	-	-	1	1	-	-
соз	3	2	÷	-	-	2	3	1	•	1.00	-	1	1		-
CO4	3	2	•	-	- 1	2	3	1		-		1	1	0.3	•
CO5	3	- 3	1	-	•	2	3	1	-	-		1 -	1	- 1	
со	WYEOL	LEGEOF	ENGG.	·	-	2	3	1	•	-		1	1	-	-
(Ayer)		Machabia	alights (b)	NA I		2: Mode	erate (N	Aedium)	3:	Substa	ntial (H	igh)		
13	Board of	RICONALITY	and the second sec												
	Board of	CCT	2020)	-			<u> </u>		10.0		2018 R		R ater	and et

UNI	TI	SOLAR ENERGY	. 9
Plate	e and Concen	- Measurements of solar Radiation and sunshine – Solar Thermal Colle attrating Collectors – Solar Applications – fundamentals of photo Voltai V Systems – PV Applications	ctors – Flat c Conversion
	тп	WIND ENERGY	9
Win and	d Data and E its performan	nergy Estimation – wind Energy Conversion Systems – Wind Energy and Energy and Energy Storage – Applications – Hybrid systems.	generators
UNI	T III	BIO ENERGY	9
DIOI	hass gasmer	Source, Composition, Technology for utilization – Biomass direct con – Biogas plant – Digesters – Ethanol production – Bio diesel productio studies for rural bio gas plant	nbustion – n and
UNI	TIV	OTEC, TIDAL, GEOTHERMAL AND HYDEL ENERGY	9
Tida hydr	l energy – W o, turbines –	ave energy – Data, Technology options – Open and closed OTEC Cycl Geothermal energy sources, power plant and environmental issues.	es – Small
UNI		NEW ENERGY SOURCES	9
Hyd Fuel	rogen, genera cells – techn	ation, storage, transport and utilization, Applications : power generation ologies, types – economics and the power generation	n, transport –
Text	Book (s)		
1	G.D. Rai, 1 2010.	Non Conventional Energy Sources, Khanna Publishers, New Delhi, 5th	n Edition,
2	D. P. Koth	ari, K. C. Singal and Rakesh Ranjan, Renewable Energy Sources and I	Emerging
	Technolog	ies, Prentice Hall of India, New Delhi, 2nd Edition, 2009.	
Refe	rence (s)		
1	Godfrey B U.K., 3rd I	oyle, Renewable Energy, Power for a Sustainable Future, Oxford Univ Edition, 2012.	versity Press,
2	John Twide	ell, Tony Weir, Renewable Energy Sources, EFN Spon Ltd., UK, 3rd	Edition 2015
3	G.N. Tiwa	ri, solar Energy – Fundamentals Design, Modelingand applications, National House, New Delhi, Revised Edition 2012.	arosa
	and the second design of the s		
4	Publishing	tme, Solar Energy-Principles of thermal Collection and storage, Tata I Company Ltd., New Delhi, 3rd Edition 2009. oyle, Renewable Energy, Power for a Sustainable Future, Oxford Univ	

٠.,

	Reg	ulation	2018		Se	emest	er V	/ VI /	VII	/ VIII			'otal H		4
0			-				~					Н	ours / \	Week	
Ca	tegor		ourse C	ode			Cour	se Na	me			L	Т	I	>
	E	18	8MEE0	14T			DLAR				-	3	0	C)
Prei	equis	ite Cou	rse (s)				1	1.23	-						
Nil															
Cou	rse O	bjectiv	e (s):							r eth a	C Subt		1	2013	
3	> To	learn a	bour So	lar ene	ergy ar	nd tec	hniqu	les to	utilize	e it eff	icientl	y and c	cost eff	ectively	у.
2			bout Co		on of s	sunlig	,ht to	heat f	or eit	her dir	ect usa	age or	further	conver	sion to
			gy carri e Desigi		ar than	mala	votom	for o	aive	arita	io				-
	and the second		the kno						-			impler	nent		
-	-	-			-		0.	1000	ge an		655 10	mplei	nent.		
	-	10 million 10	bout Ap	(and a little of the	ons of	solar	energ	gy			-				-
Cou	rse O	utcome	(s) (CC	Ds):	-		_					- marker			_
COI			nd the a		e sola	r ener	gy an	d the	currei	nt sola	r energ	gy conv	version	and	
	-		45				_								
CO2		nalyze p aluate s	berform solar	ance of therma			ollect	or and	d deve	elop sk	tills to	design	, mode	l, analy	ze and
	ev	aluate s		therma	al syste	ems.			d deve	elop sk	cills to	design	, mode	l, analy	vze and
CO3	ev Ur	aluate s nderstar	olar	therma hotovo	al syste Itaic c	ems. ells o	perati	on.							ze and
CO3 CO4	ev Ur Es	aluate s nderstar timate t	olar	therma hotovo array re	al syste Itaic c equirer	ems. ells o nent	perati for sn	on. nall re	siden	tial an	d indu	strial a	pplicati	ons.	ze and
CO3 CO4 CO5	ev Ur Es So	aluate s iderstar timate t lve sim	iolar id the pl the PV a ple to c	therma hotovo array re	al syste Itaic c equirer	ems. ells o nent	perati for sn	on. nall re	siden	tial an	d indu	strial a	pplicati	ons.	ze and
CO3 CO4 CO5	ev Ur Es So	aluate s nderstar timate t	iolar id the pl the PV a ple to c	therma hotovo array re	al syste Itaic c equirer	ems. ells o nent	perati for sm of sola	on. nall re	siden	tial an	d indu	strial a	pplicati	ons.	ze and
CO3 CO4 CO5 CO-]	ev Ur Es So	aluate s iderstar timate t lve sim	iolar id the pl the PV a ple to c	therma hotovo array re	al syste Itaic c equirer	ems. ells o ment	perati for sm of sola	on. nall re	siden	tial an	d indu	strial a	pplicati	ons. age.	PSO3
CO3 CO4 CO5	ev Ur Es So PO M	aluate s iderstar timate t lve sim apping	olar nd the pl the PV a ple to c	therma hotovo array re omplex	al syste ltaic c equirer c probl	ems. ells o ment : lems o	perati for sm of sola	on. hall re ar the	siden rmal e	tial and energy	d indu	strial a	pplicati	ons. age.	
COs	ev Ur Es So PO M	aluate s iderstar timate t lve sim apping PO2	PO3	therma hotovo array re omplez	al syste ltaic c equirer c probl	ems. ells o ment lems o PO	perati for sm of sola ps PO7	on. hall re ar the PO8	siden rmal e	tial and energy PO10	d indu conve	strial a rsion a PO12	pplication and stor PSO1	ons. age. PSOs PSO2	PSO3
CO3 CO4 CO5 CO-] COs CO1 CO2	ev Ur Es So PO M PO1 3	aluate s iderstar timate t lve sim apping PO2 3	PO3	therma hotovo array re omplex PO4	al syste Itaic c equirer c probl	ems. ells o ment lems o PO PO 2	perati for sm of sola os PO7	on. hall re ar the PO8	siden rmal e PO9 -	tial and energy PO10	d indu conve	strial a rsion a PO12 2	pplication and stor PSO1	ons. age. PSOs PSO2	PSO3
CO3 CO4 CO5 CO- CO5 CO- CO5 CO1 CO2 CO3	ev Ur Es So PO M PO1 3 3	aluate s iderstar timate t lve sim apping PO2 3 3	PO3	therma hotovo array re omplez PO4 1 2	al syste Itaic c equirer c probl	ems. ells o ment lems o PO 2 2 2	perati for sm of sola ps PO7 1	on. hall re ar the PO8 -	siden rmal e PO9 -	tial and energy PO10	d indu conve	strial a rsion a PO12 2 1	pplication and stor PSO1 - 2	Ons. age. PSOs PSO2 -	PSO3 - 2
CO3 CO4 CO5 CO- CO3 CO1 CO2 CO3 CO4	ev Ur Es So PO M PO1 3 3 3	aluate s iderstar timate t lve sim apping PO2 3 3 2	PO3	therma hotovo array re omplez PO4 1 2 1	al syste Itaic c equirer c probl PO5 - 2 -	ems. ells o ment lems o PO6 2 2 2 2	perati for sm of sola ps PO7 1 1	on. hall rear the pos - 1 -	siden rmal e PO9 - -	ronergy PO10	d indu conve	strial a rsion a PO12 2 1 2	pplication and stor PSO1 - 2 -	Ons. age. PSOs PSO2 -	PSO3 - 2 -
CO3 CO4 CO5 CO-] cOs CO1	ev Ur Es So PO M PO1 3 3 3 3 3 3	aluate s iderstar timate t lve sim apping PO2 3 3 2 3	PO3 1 2 1 2	therma hotovo array re omplez PO4 1 2 1 2	al syste Itaic c equirer & probl PO5 - 2 - 2	ems. ells o ment lems o PO6 2 2 2 2 2 2 2	perati for sm of sola ps PO7 1 1 1 1	on. nall re ar the PO8 - 1 - 1	siden rmal e PO9 - - -	ronergy PO10 - -	d indus conve POII - - -	strial a rsion a PO12 2 1 2 2	pplication and stor PSO1 - 2 - 2	Ons. age. PSOs PSO2 - - -	PSO3 - 2 - 1

KARUR - 639 113

M.Kurnarasamy college of Engineering NAAE Accredited Autonomous Institution Approved by AICT- & Athlated to Anna deriversity. Thalavapalayam, Karur, Tamiloadu.

9 UNIT I INTRODUCTION Energy alternatives - New energy technologies - Solar thermal process Solar Radiation -Solar constant - extra terrestrial radiation - clear sky irradiation - solar radiation measurement estimation of average solar radiation - solar radiation on tilted surface. 9 **UNIT II** FLAT PLATE COLLECTORS Energy balances equation and collectors efficiency - collector performance - collector improvements, effect of incident angle, dust and shading - thermal analysis of flat plate collector and useful heat gained by the fluid - collector design - heat transfer factors. UNIT III **CONCENTRATION COLLECTORS AND REFLECTORS** 9 Parabolic concentrators, non-imaging concentrators, other forms of concentrating collectors. Tracking -receiver shape and orientation - performance analysis - reflectors - reflectors orientation -performance analysis. UNIT IV SOLAR ENERGY STORAGE 9 Stratified storage - well mixed storage - comparison - Hot water system - practical consideration -solar ponds - principle of operation and description of Non-convective solar pond - extraction of thermal energy application of solar ponds. UNIT V APPLICATIONS OF SOLAR ENERGY 9 Solar electric power generation, photo voltaic cells. Solar furnace, Solar Chimney, heaters power generation system. Tower concept - solar refrigeration system, thermo electric refrigeration system. Text Book (s) Sukhatme.K, Suhas P. Sukhatme, "Solar energy: Principles of thermal collection and 1 storage", Tata McGraw Hill publishing Co. Ltd, 8th Edition, 2011. Goswami D.Y., Kreith F., Kreider J.F.,"Principles of Solar Engineering", Taylor and 2 Francis,2nd Edition,Indian reprint, 2015. Reference (s) G.D. Rai, "Solar Energy Utilization", Khanna Publishers, 5th Edition, 2014. 1 Kriender, J.M., 'Principles of Solar Engineering', McGraw Hill, 2000. 2 3 Mangal, V.S., 'Solar Engineering', Tata McGraw Hill, 2014. Bansal, N.K., 'Renewable Energy Source and Conversion Technology', Tata McGraw Hill, 4 2011. John.A. Duffie and Willam A.Beckman., 'Solar Engineering of Thermal Processes', Wiley, 5

2006.

R	egulation 2018	Semester V / VI / VII / VIII	1.198	Total He	ours	45
		and the second	I	Iours / V	Veek	
Catego	ory Course Code	Course Name	L	Т	Р	C
E	18MEE016T	WASTE MANAGEMENT AND ENERGY RECOVERY	3	0	0	3
Prereq	uisite Course (s)			CONCERCION OF C		
Therma	l Engineering					
Course	Objective (s):					3
	To impart knowledge of prevention and control.	on sources and characteristics of various	s wastes	and strat	egies for	its
	of through natural pro Engineering disposal.	and how can it be minimized, what is pocesses and how to harness those pro	cesses t			
		eat recovery systems and its application	1999			
	TO NOT ONE OFFICE ADDRESS OF COMPANY OF ADDRESS	e heat recover system design and partic	ulars.			
C L L N	To identify the environ	mental impact.				
Course	Outcome (s) (COs):	where the spectrum set and		and and		in mark
CO1 E	Explain the operating pr	rinciples of waste management system				
CO2 I	dentify the ways of env	vironment pollution.				
CO3 [Describe the issues in w	vaste management system.				
CO4 A	Analyses the Waste Hea	at recovery system.				
CO5 II	llustrate the environme	ntal impact on universal.				
CO PO	Mapping		ct.			100000000
0-10	Mapping			1		

					-	PC	Os							PSOs	
COs	POI	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COI	3	1	2		-	3	3	-	-		E	1	•	-	-
CO2	- 3	2	1	-	-	3	3	2	-	•	-	2	1 .	-	
CO3	3	I	3	1	-	2	3	2			1	1	1	-	2
C04	3	1	3	1		2	3	2		1	-	-	2		2
C05	3	2	2	2	-	3	3	2	-	-	-	2	2		1
CO (Avg)	3	1.4	2.2	1.3	-	2.6	3	2	-			1.5	1.5		1.6
	-	EGEOF	Tinter (L	ow)	2	: Mode	erate (N	ledium)	3: 5	Substan	tial (Hi	gh)		

M.Kumarasamy College of Engineering NAAC Accredited Autonomous Institution Approved by ACIE & Arfilated to Anno Jerversty Thaloropalayom, Karur, Tamilhadu.

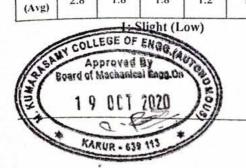
UNI	TI	INTRODUCTION TO WASTE MANAGEMENT	9
Was of W	te manageme /aste manage	nt system - Pollution studies - Issues relating to waste management in ment - Classification of waste - 3R system- 3D system.	clude – Needs
	тп	SOLID WASTE MANAGEMENT	9
Was Redu	te Collection action, Produ	Waste Management: An IntroductionGeneration and Characteristics of , Storage and Transport -Waste Disposal-Waste Processing Techniques ct Recovery and Recycling-Hazardous Waste: Management and Treate Management (IWM).	s- Source
UNI	T III	WASTE HEAT RECOVERY	9
Intro Powe	duction - Pri er Plant.	nciples of Thermodynamics and Second Law - sources of Waste Heat	recovery -
UNI	T IV	WASTE HEAT RECOVERY SYSTEMS	. 9
		ery systems - Design Considerations - fluidized bed heat exchangers - pumps -thermic fluid heaters - selection of waste heat recovery techno	
UNI	ΤV	ENVIRONMENTAL NEEDS	9
	ronmental co studies	onsiderations for waste management and waste heat recovery – Pollution	on-
Text	Book (s)		
1	edition (31	os Kalogirou, "Waste-to-Energy Technologies and Global Applications", C August 2017).	
2	John Pichte CRC Press,	I, "Waste Management Practices: Municipal, Hazardous, and Industrial, Se 2014.	cond Edition "
Refe	rence (s)		
1		glous G., Theisen H. and Vigil S. (2003) Integrated Solid Waste Mana g Principles and Management Issues, New York, McGraw	gement:
2		A., Worrell W.A. and Reinhart D.R. (2001) Solid Waste Engineering	, Australia,
3	Fuel Econo	omy in furnaces and Waste heat recovery-PCRA.	
4	Heat Record	very Systems by D.A.Reay, E & F.N.Span, London, 2012.	

193

Thaiavapalayam, Karur, Tamlinadu.

R	egula	ation 2	018		Sei	nester	·v/v	1/VI	I / VII	I		Tota	l Hou	rs	45
	-											Hours	s/We	ek	
Catego	ory	Cour	rse Coo	de		C	ourse	Name			L	1	r	P	
E		18M	EE019	Т	ENER	GY CO MA	ONSE			AND	·3	()	0	3
Prereq	uisit	e Cour	se (s)				1.1.1	1.1.1							
Therma	al Eng	gineerir	ng					-							
Course	e Obj	ective	(s):			The set	19. 91	1			-161		122	100	No. of
and the second second	1-1-1-1		oletion	of this	course	e, the s	tudent	s can a	able				(in	Acres 1	
4			the end												
A	Can	carry o	out ener	rgy acc	countir	ng and	balanc	ing							
A	Can	sugges	st meth	odolog	ies for	energ	y savii	ngs							2010
A	To a	inalyze	the eco	onomio	es in er	nergy ı	ıtilizat	ion				194.04	- 23		
Course	e Ou	tcome	(s) (C(Ds):					3	1.			1.15	-	÷ŕ
COI	Desc	cribe th	e impo	rtance	of ene	rgy co	nserva	tion ar	nd its a	uditing	g				
CO2	Anal	lyze the	e energ	y cons	erve as	spects	in elec	trical s	system	S			-	8	
CO3	Anal	lyze the	e energ	y cons	erve as	spects	in ther	mal sy	stems	along	with ca	ase stu	dies		
CO4	Stud	y and (Calcula	tion of	energ	y cons	ervatio	on in o	ther ut	ilities.					
CO5	Dem	onstra	te the e	conom	ics and	d its re	lative	terms.							
CO-PO	O Ma	apping							*****		-			109/31-2	- 9 <u>9</u>
T						PC)s				-			PSO	
COs -	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSOs PSO2	PSO3
COI	2	1	1		-	2		-		1		1		-	
CO2	3	3	1	1		2		1	-			2	1	-	
CO3	3	3	1	1	-	2		1			-	2	1	-	
CO4	3	3	1	1		2		1	100	5		1	1	-	
C05	3	3	•	1		2		1	- 11-		2	1		-	1
CO (Avg)	2.8	2.6	1	1	-	2	•	1	-		2	1.4	1	-	
		1:5	light (L	ow)	2	· Mode	erate (N	ledium	1	2. 0	Subatan	tial (Hi		· · · · · · ·	

3: Substantial (High)


UNIT	I	INTRODUCTION	9
targetir enviror	ng – econon nmental asp	role of energy manager and auditior in industries: energy monitoring, auditing nics of various energy conservation schemes – national energy consumption d ects associated with energy utilization – energy auditing: methodology and bar nergy auditing.	ata -
UNIT	II	ELECTRICAL SYSTEMS	9
improv	onents of El vement, harr	B billing – HT and LT supply, transformers, cable sizing, capacitors, power f monics, electrical motors: motor efficiency computation, energy efficient mot	actor tors -
UNIT	ш	THERMAL SYSTEMS	9
studies	s of energy	boilers, furnaces and thermal fluid heaters – efficiency computation and conservation measures –Steam: steam traps, condensate recovery, flash s ators and refractories	case team
UNIT	IV	ENERGY CONSERVATION IN MAJOR UTILITIES	9
spray	geration and ponds, case g in building	air conditioning – heat load estimation – energy conservation in cooling tower e studies- electrical energy – energy efficiency in lighting, case studie for er gs	s and hergy
UNIT	`V	ECONOMICS	9
Energ cycle	y economic costing - ES	es – discount rate, play back period, internal rate of return, net present value SCO concept	, life
Text	Book (s)		24
1	D.Yogigo:	swami, Industrial Energy Conservation, 2nd Edition, CRC Press, 2017.	
. 2	website ad of Power,	Iministered by Bureau Of Energy Efficiency (BEE) a statutory body under min Gov Of India, 2004	istry
	ence (s)		1. AN
Refere	01100 (0)		
Refere 1		C., "Energy Management Hand book", Wiley, New York 2012	-
1	Turner. W	V.C., "Energy Management Hand book", Wiley, New York, 2012 W.R. and G. Mc KAY, "Energy Management", Butterworths, London 2017	
1	Turner. W Murphy. V	V.C., "Energy Management Hand book", Wiley, New York, 2012 W.R. and G. Mc KAY, "Energy Management", Butterworths, London 2017. C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation"	,

P	Regula	ntion 20	018		Ser	nester	V/V	1 / VII	/ VII	I		Total	Hour	s	45
												Hours	/Wee	ek	
Categ	ory	Cour	se Cod	e		C	ourse	Name			L	r		Р	C
E		18M	EE030	Г	Π			L SAF ERING			3	0)	0	3
Prerec	quisit	e Cour	se (s)												-
Nil															
Cours	e Obj	jective	(s):												Carlo P
>	To a	nticipa	te, iden	tify, ev	valuate	e, and	contro	l work	place l	nazardo	ous con	nditior	ns and	practic	es.
4	То	develoj grams.													
>		address	identifi	ied haz	ards, o	conditi	ons, ai	nd prac	ctices i	in a cos	st effec	ctive m	nanner		
A	To r	neasure	e and ev	aluate	occup	ationa	l safet	y and l	nealth	perform	mance.				
8	Τοι	understa	and the	provis	ions c	ontaine	ed in tl	he indu	strial	laws.			ie word		
Cour	se Ou	tcome	(s) (CC)s):	1.1	4114	1.1	1.4		-		1		1	
C01	1	out the	Sector and a		y cons	iderati	ons.	<u>1907 - 10</u>				petro per		uternam.	2.2
CO2		nitor and						follow	ed in v	arious	indus	tries.			
CO3		yout sa									-				
CO4		erstand		-2										_	
		familia							<u> </u>	untring				- 17	
CO5						u rules	appin		ormat	ustries.			-		-
CO-P	ю Ма	apping													-
						PC								PSOs	
cos		DOR	0.00	DOI		PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	and the second	
COs -	PO1	PO2	PO3	PO4	PO5			2	1					PSO2	PSO3
1	PO1 2 3	PO2 1 2	PO3 1 2	PO4 - 1	-	3	2	3	-	-	-	-	-	PSO2	PSO:

2

2

1.8

3

3

2.8

CO4

CO5

CO

2

2

1.8

I

2

1.2

3

2

2.8

153

-

-

1

3

3

2.8

2: Moderate (Medium)

2

3

2.6

•

-

.

.

.

-

-

2

-

1

1

1

3: Substantial (High)

-

-

1

÷

-

-

-

•

.

0 KARUR

	[]	SAFETY IN PROCESS PLANTS	9
extin Air p	guishers – ty purification –	 Energy source – Release of hazardous materials – Fires – Types of fires pes and handling. Personal protective equipments – Types – Helmets – Resp Chemical protective clothing – gloves for heat – electricity and chemical as – Industrial Hygiene – Principles – Health and safety Ergonomics. 	irator -
UNI	гш	SAFETY IN HIGH PREESURE OPERATIONS AND CHEMICAL INDUSTRIES	9
com main	missioning a	as design, unit operations, pressure vessel, heat exchanger, safety valves and inspection, pressure vessel, non-destructive testing, vibration, corrosion d emergency planning, management of maintenance HAZOP study, A	n Plan
UNI	Т 111	HAZARDS IN INDUSTRIES	9
Engi – Th	neering cont ermal power	rol of hazards and accidents due to fire explosion and natural causes in the Ind plant – Atomic power plant – mining industries – Fertilizers – petroleum refin	ustries ery.
	TIV	SAFETY MANAGEMENT ation, International Labour Organization (ILO), National Safety Council, Tech	9
inve com	stigation, Sa mittee-Safety	Analysis (JSA), Safety survey, Safety inspection, Safety Sampling, Ac d Reporting - Concept of an accident, Accident causation models, cost of ac afety Performance Monitoring - Safety indices. Types of organization – y councils-Safety education-First aid.	
UNI	TV	THE OCCUPATIONAL SAFETY, HEALTH AND WORKING CONDITIONS CODE	9
Fact	ory Act 194	19 Safaty and Harley I and many second	
chap Vehi	oters, Environ icle Rules, E	48-Safety and Health chapters, Tamil Nadu Factories Rules- Safety and mment and Pollution Laws, Building and other construction works act 1996, xplosive Act 1983, Boiler Act, Child labour and women employee Acts	Health Motor
Vehi	oters, Environ icle Rules, E: t Book (s)	nment and Pollution Laws, Building and other construction works act 1996, xplosive Act 1983, Boiler Act, Child labour and women employee Acts	Health Motor
Vehi	icle Rules, E t Book (s) Rolland P	xplosive Act 1983, Boiler Act, Child labour and women employee Acts . Blake, "Industrial safety", II Edn, Prentice Hall Inc. New york, Latest Editi	Motor
Vehi Text	icle Rules, E t Book (s) Rolland P	As-Salety and Health chapters, Tamil Nadu Factories Rules- Safety and nment and Pollution Laws, Building and other construction works act 1996, xplosive Act 1983, Boiler Act, Child labour and women employee Acts . Blake, "Industrial safety", II Edn, Prentice Hall Inc. New york, Latest Editi Handley Mc, "Industrial Safety Hand book", II Edn, – Graw Hill Book Co.,	Motor
Vehi Text 1 2	icle Rules, E t Book (s) Rolland P	xplosive Act 1983, Boiler Act, Child labour and women employee Acts . Blake, "Industrial safety", II Edn, Prentice Hall Inc. New york, Latest Editi	Motor
Vehi Text 1 2	t Book (s) Rolland P Willaim H (1977). Rerence (s) Blake R.B	. Blake, "Industrial safety", II Edn, Prentice Hall Inc. New york, Latest Editi Handley Mc, "Industrial Safety Hand book", II Edn, – Graw Hill Book Co.,	Motor on. U. K.
Vehi Text 1 2 Refe	t Book (s) Rolland P Willaim H (1977). Rerence (s) Blake R.B	. Blake, "Industrial safety", II Edn, Prentice Hall Inc. New york, Latest Editi Handley Mc, "Industrial Safety Hand book", II Edn, – Graw Hill Book Co.,	Motor on. U. K.
Vehi Text 1 2 Refe	icle Rules, E t Book (s) Rolland P Willaim H (1977). erence (s) Blake R.B National S 1988. Explosive	 and other construction works act 1996, xplosive Act 1983, Boiler Act, Child labour and women employee Acts Blake, "Industrial safety", II Edn, Prentice Hall Inc. New york, Latest Editi Handley Mc, "Industrial Safety Hand book", II Edn, – Graw Hill Book Co., a., Industrial Safety, Prentice Hall, Incorporated, New Jersey, 1973. Safety Council, Accident Prevention Manual for Industrial Operations, Charter Act-1884, Eastern Book Company, Lucknow -266 001 1984 	Motor on. U. K.
Vehi Text 1 2 Refe 1 2	icle Rules, E t Book (s) Rolland P Willaim H (1977). erence (s) Blake R.B National S 1988. Explosive	 and other construction works act 1996, xplosive Act 1983, Boiler Act, Child labour and women employee Acts Blake, "Industrial safety", II Edn, Prentice Hall Inc. New york, Latest Editi Handley Mc, "Industrial Safety Hand book", II Edn, – Graw Hill Book Co., a., Industrial Safety, Prentice Hall, Incorporated, New Jersey, 1973. Safety Council, Accident Prevention Manual for Industrial Operations, Charter Act-1884, Eastern Book Company, Lucknow -266 001 1984 	Motor on. U. K.
Vehi Text 1 2 Refe 1 2 3	icle Rules, E t Book (s) Rolland P Willaim H (1977). Blake R.B National S 1988. Explosive Subraman	 and other construction works act 1996, xplosive Act 1983, Boiler Act, Child labour and women employee Acts Blake, "Industrial safety", II Edn, Prentice Hall Inc. New york, Latest Editi Handley Mc, "Industrial Safety Hand book", II Edn, – Graw Hill Book Co., and Industrial Safety, Prentice Hall, Incorporated, New Jersey, 1973. Safety Council, Accident Prevention Manual for Industrial Operations, Ch Act-1884, Eastern Book Company, Lucknow -266 001,1984. ian V., The Factories Act, 1948, with Tamil Nadu Factories Pulse, 1950, p. 1950. 	Motor on. U. K.
Vehi Text 1 2 Refe 1 2 3 4 5	icle Rules, E t Book (s) Rolland P Willaim H (1977). erence (s) Blake R.B National S 1988. Explosive Subramani "Occupation	 and other construction works act 1996, xplosive Act 1983, Boiler Act, Child labour and women employee Acts Blake, "Industrial safety", II Edn, Prentice Hall Inc. New york, Latest Editi Handley Mc, "Industrial Safety Hand book", II Edn, – Graw Hill Book Co., Industrial Safety, Prentice Hall, Incorporated, New Jersey, 1973. Safety Council, Accident Prevention Manual for Industrial Operations, Ch Act-1884, Eastern Book Company, Lucknow -266 001,1984. ian V., The Factories Act, 1948, with Tamil Nadu Factories Rules, 1950, Madr onal Accident Prevention Judson & Brown ", john Wiley, Jand. (1996). 	Motor on. U. K.
Vehi Text 1 2 Refe 1 2 3 4 5	icle Rules, E t Book (s) Rolland P Willaim H (1977). erence (s) Blake R.B National S 1988. Explosive Subramani "Occupation	 and other construction works act 1996, xplosive Act 1983, Boiler Act, Child labour and women employee Acts Blake, "Industrial safety", II Edn, Prentice Hall Inc. New york, Latest Editi Handley Mc, "Industrial Safety Hand book", II Edn, – Graw Hill Book Co., and Industrial Safety, Prentice Hall, Incorporated, New Jersey, 1973. Safety Council, Accident Prevention Manual for Industrial Operations, Ch Act-1884, Eastern Book Company, Lucknow -266 001,1984. ian V., The Factories Act, 1948, with Tamil Nadu Factories Pulse, 1950, p. 1950. 	Motor on. U. K.

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICIT & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

	Regul	ation 2	2018				Semes	ster VI	I			Total Hours Hours / Week				
Cate	gory	Cou	rse Co	de			Cours	e Nam	е			20.511 Distant		- C		
F		18M	BH20	2T	5	OCL	AL EN	GINE	ERIN	G	L 2		P 0	2		
No. of Concession, Name	Carton Dall and the	e Cour		ATTAC								the second second				
Nil		1000		-			Contraction of the			NATION Y TO		a transformed at	ALLEY IN ALLEY			
Cour	se Ob	jective	(s): Tl	ne purj	pose o	f learn	ing th	is cours	se is to					444		
1	Lea	rn abou	ıt fund	ament	al con	cept of	f socia	l engin	eering	A SHOL						
2	-		-							and the second	ineering	<u>,</u>				
3	-	derstan	-			-	-				-					
4	Un	derstan	d the e	thical	hackin	1g	-				m					
5	Lear	rn abou	it the a	ttacks	agains	st indiv	viduals	s and o	rganiza	ations						
Cours	se Out	tcome ((s) (CC)s): A	t the e	nd of t	his co	urse, le	arners	will be	e able to);				
CO1	Und	erstanc	l the co	oncept	ofsoc	cial en	gineer	ing and	l types	ofatta	cks.		No. Wester	- 2014		
CO2				-					1			ractices		1947		
CO3	1	erstand			1.1100	_		1		1			1.1.1			
CO4	Exh	ibit the	e ethic	al hac	king	conce		_	scopes	, threa	ts and	l attac	k vect	ors and		
		mon ar					ndivid	uale on	d orga	nizotio	20					
CO5	a set salay	AND DESIGNATION OF	leage (sks ag				u orga	nizatio	115.			A. Car		
CO-F		pping				1	POs	1.3.79					PS	Os		
COs	PO1	PO2	PO3	PÒ4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSOI	PSO2		
C01	2	2,				L	1	1	1	1		- 1	1 1			
CO2	1	1				2		2	1	•		Í.	4 3-	-		
CO3		1		-			1	2	1		-	1	•	1		
CO4			e	•		15	•	3		-	-	1		-		
CO5	1	1				121	1.0	-	1	1	-	Inter al an Inter	-	-		
CO (Avg)	1.33	1.25	41	10 Teres	14.14	1.50	1.00	2.00	1.00	1.00	of MI by	LLEGE OF	ENGG.(AU	10		
	1: Slig	ght (Lo	w)	5	2:	Mode	erate (Mediu	im)	AUN.	Boalt of	OCT	M.(High 20201	and a		

M.KUMARASAM OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICH, & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

6

6

6

6

6

INTRODUCTION TO SOCIAL ENGINEERING UNIT I

Social Engineering Defined - Why Does Social Engineering Work - Identify Communication Style key aspects of social engineering - Categories of Social Engineering Attacks - human - based attacks and technology - based attacks

KEY SECURITY UNIT II

Key security - concepts - Types of key security concepts - Cyber security position. The CIA Triad the significance of incident response and frameworks around cyber security. IT Governance - Best practices - compliance.

PSYCHOLOGY OF SOCIAL ENGINEERING UNIT III

Mind Tricks: Psychological Principle - Four fundamental aspects of human nature that social engineers - the desire to be helpful - the tendency to be trusting - the fear of offending others - the tendency to cut corners

ETHICAL HACKING AND SOCIAL ENGINEERING UNIT IV

Ethical Hacking Concepts and Scopes - Threats and Attack Vectors - Information Assurance Architecture - Vulnerability Information Security Enterprise Penetration Testing - Types of Social Engineering - Insider Attack - Preventing Modelling -Threat Insider Threats - Social Engineering Targets and Defence Strategies. Common Areas of Vulnerability - Appropriate access - Assessed resistance - Information availability

CASES OF SOCIAL ENGINEERING UNIT V

Notable Cases of Social Engineering - Attacks against Individuals - Attacks against Organizations -Preventing Social Engineering Attacks - Mitigating the Damage of Social Engineering Attacks -Segregation of Access - Maintain Access Logs - Ensure That Backups Occur Regularly -Automatically Revoke User Privileges If Suspicious Activity Is Detected

Kete	rence (s)
1	Kevin D. Mitnick, William L. Simon, Steve Wozniak, The Art of Deception: Controlling the Human Element of Security, Wiley, October 17th 2003 Christopher Hadnagy, Social Engineering: The Science of Human Hacking Paperback-Wiley
2	Publishing Inc., Edition 2018
3	Beginners, Including Ethical Hacking, Risk Assessment, South 2018
4	Defense Strategies, and Cyberwarfare Paperback -2010 Dr. Erdal Ozkaya, Learn Social Engineering: Learn the art of human hacking with an internationally renowned expert-2018

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution

Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamiinadu.

Re	gulati	on 201	8		Pro	fessio	nal E	lective	e - Gr	oup II		To	tal Ho	urs	45
		Cou							Т			Hou	ars / W	'eek	G
Catego	ory	Cou					Cour	se Na	me			L	Т	Р	С
Е		18EEE	.007T	WIN	ID EN	ERG	Y COI	NVER	SION	SYST	EMS	3	0	0	3
Prerec	quisite	e Cour	se (s)					1		Jacob Contraction					
Electri	ic Pow	ver Ger	neratio	n, Pov	wer El	ectron	ics an	id Cor	verter	S					
Cours	e Obj	ective	(s): T	he pur	pose o	of lear	ning t	his co	urse is	to:					
1	Und	erstanc	l the f	undarr	nentals	s of wi	nd en	ergy a	nd its	conver	sion sy	stem	11.1	-	
-2	Und	erstanc	l the c	ontrol	of Wi	ind tu	bine 1	otor f	or mai	ximum	power	extract	ion	22	
3	Und	erstand	the c	oncep	ts of f	ixed s	peed s	system	is and	Variab	le spee	d system	ms	-	
4	Lean	n the r	noderi	n winc	l turbi	ne cor	ntrol 8	k mon	itoring	g.					
5	Und	erstand	the g	rid in	tegrati	on iss	ues.				222			1 2 4	-21
Cours	se Out	come	(s) (C	Os): A	At the	end of	this c	ourse	, learn	ers wil	l be ab	le to:			
CO1	Acqu	uire kn	owled	ge on	the ba	sic co	ncept	s of W	ind er	nergy c	onversi	on syst	em.		
CO2		ize the er extra		pts of	math	ematio	cal mo	deling	g and o	control	of Win	nd turbin	ne for r	naximu	.m
CO3	Expl	ain the	e conce	ept of	Fixed	speed	syste	m, Va	riable	speed	system	and its	modeli	ing.	
CO4	Desc	cribe th	ne mod	lern w	rind tu	rbine	contro	ol and	monit	oring.					
CO5	Inter	pret th	e Grid	l integ	ration	issue	5								
CO-P	O Ma	pping						1 - 11 - 11 11 - 11 - 11 11 - 11 - 11				10. – 20. – 11. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21. – 21			
COs							POs							PSOs	
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	- 1	-	-	2	1		1	1	1	1	2	1
CO2	2	1	1	1	-		2	1	-	1	1	1	1	2	1
CO3	2	1	1	1	1	-	2	1	÷	1	1	1	1	2	1
CO4	2	1	1	1	4	-	2	1	-	1	1	1	1	2	1
C05	2	1	1	1	-		2	1	-	1	1	1	1	2	1
CO (Avg)	2	1	1	1	1	-	2	1	-	1	1	1	1	2	1

2: Moderate (Medium) 1: Slight (Low)

3: Substantial (High)

Y COLLEGE OF ENGG etrical and Electronic OCT 2020 32 0

Curriculum and Bydlabustp2 8 Regulation 07

MAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution

Thalavapalayam, Karur, Tamiinadu.

UNIT I INTRODUCTION

Components of WECS - WECS schemes - Power obtained from wind - simple momentum theory - Power coefficient - Sabinin's theory - Aerodynamics of Wind turbine.

9

9

9

9

9

UNIT II WIND TURBINES

HAWT - VAWT- Power developed - Thrust-Efficiency - Rotor selection - Rotor design considerations - Tip speed ratio - No. of Blades - Blade profile - Power Regulation - yaw control - Pitch angle control stall control - Schemes for maximum power extraction.

UNIT III WIND TURBINE CONTROL & MONITORING SYSTEM

Details of Pitch System - Control Algorithms, Protections used - Safety Consideration in Wind turbines - Wind Turbine Monitoring with Error codes - SCADA and Databases: Remote Monitoring and Generation Reports - Operation and Maintenance for Product Life Cycle, Balancing technique (Rotor & Blade), Standards and Grid Codes.

UNIT IV FIXED SPEED AND VARIABLE SPEED SYSTEMS

Generating Systems - Constant speed constant frequency systems - Choice of Generators -

Deciding factors - Squirrel Cage Induction Generator - Model of Wind Speed - Model wind turbine rotor - Drive Train model - Need of variable speed systems - Power-wind speed characteristics -Variable speed constant Frequency systems synchronous generator - DFIG - Variable speed generators modeling - Variable speed variable frequency schemes.

UNIT V GRID CONNECTED SYSTEMS

Wind interconnection requirements, low-voltage ride through (LVRT), ramp rate limitations, and supply of ancillary services for frequency and voltage control, current practices and industry trends wind interconnection impact on steady - state and dynamic performance of the power system including modeling issue.

Text Book (s)

TOTALCO.	
1	L.L.Freris, "Wind Energy conversion Systems", Prentice Hall, 1990
2	S.N.Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Sytems", Oxford University Press, 2010.
3	John D Sorensen and Jens N Sorensen, "Wind Energy Systems", Woodhead Publishing Ltd, 2011.
.4	Mario Garcia-Sanz, Constantine H. Houpis, "Wind Energy Systems", CRC Press 2012.
Refe	rence (s)
1	N. Jenkins, "Wind Energy Technology" John Wiley & Sons,1997
2	Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006.
3	E.W.Golding "The generation of Electricity by wind power", Redwood burn Ltd., Trowbridge, 1976.
4	S.Heir "Grid Integration of WECS", Wiley 1998.
5	Spera D.A., "Wind Turbine Technology: Fundamental concepts of Wind Turbine Engineering", ASME Press, 1994.
6	Twidell J.W. and Weir A., "Renewable Energy Sources", EFN Spon Ltd., 1983

Curriculum and Syllabus 2018 Regulation

KARUR - 639 113

M.KI JMARA COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

..

...

3

3

CO5

CO

(Avg)

1

,1

2

-

1.6

*

-

R	egulat	tion 20)18		Profes	siona	l Elec	etive –	Grou	рII	1	Fotal I	Hours		45
					v ¹ ufid _i		1.74				H	lours /	Week		С
Categ	gory		lourse Code			С	ourse	Namo	•		L	T		P	C
E		18E	EE020)T	SOLA	R EN	ERG	Y UTI	LIZAT	ION	3	0		0	3
Prereq	uisite	Cours	e (s)		. este			# #							1311
Electric										100					
Course	e Obje	ctive (s): The	e purpo	se of l	earnir	ng thi	s cours	e is to						in y is
1				nts to a									easure	nent.	
2				concep											
3	Und	lerstan	d basic	know	ledge o	on dire	ect ste	eam ge	neratio	on syste	ems.	_			_
4	Lea	rn the	mainte	nance	and im	plem	entati	on of s	olar pł	notovol	taic.		1	-	-
5				test hea			_			The second s		-		Carries	
Cours				s): At								to:			
CO1				ts of so											
CO2	Exp	olain th	ne worl	king pr	ocess	of var	ious s	olar th	ermal	system	S		14 (14 ¹)	lan	-
CO3	SVS	tems.		nciples							_				
CO4	En	umerat	e the in	nporta	nce of	solar	photo	ovoltai	c main	tenance	e and t	heir in	npleme	ntation	l.
CO5	Un	derstar	nd the	orienta	tion ar	nd des	ign of	f buildi	ings by	using	latest	heat er	nergy s	torages	3.
CO-P	O Ma	pping								1 1 10 1 10					
						PC	Ds							PSOs	DGO:
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	1	-	1	-	2	2	-	-	-	2	1	2	2	2
CO2	3	1	-	-	1	2	2				2	1	2	-	
CO3	3	1	-	-	-	2	1	•		-	2	1	2	-	-
CO4	3	1		4	-	2	2	-	-		2	1	2	5-	-
<u>, cos</u>	3	1		19-10-1	-	2	1	4		-	2	1	2	2	1

2

1

2

2

1.5

,

MACACCCC Action of the second structure of the second

Ŕ

UNIT I		SOLAR RADIATION AND MEASUREMENTS	9
un an	d ear	th geometry- Solar radiation- Beam and diffuse radiations- Measurement of yranometer -Pyrheliometer- Sunshine recorder-Solar collectors and applications	of solar s.
J NIT I	п	SOLAR THERMAL SYSTEMS	9
Flat pl ooker-	late a - Sola	nd evacuated tube collectors- Domestic hot water and process heat systems r dryer-Solar desalination and solar pond.	s- Solar
U NIT	III	SOLAR POWER PLANT	9
Princip concen Solar f	ntrator	of solar parabolic concentrators- Trough and dish types- Compound p rs- Fresnel lens collectors- Central receiver plant- Direct steam generation s es.	arabolic systems-
UNIT		SOLAR PHOTOVOLTAICS	9
		Difference and the second product of the sec	iles and
Solar integra	photo ated sy	voltaic theory- Mono and polycrystalline silicon technologies- PV modu ystems implementation and maintenance.	
integra	ated sy	stems implementation and maintenance. SOLAR-CONSCIOUS BUILDINGS	9
integra UNIT Orient coolin in buil	tation dig-refr ldings	stems implementation and maintenance. SOLAR-CONSCIOUS BUILDINGS and design of buildings- Passive solar heat- Thermal capacity -Insulation rigeration and air-conditioning- Space heating- Sensible and latest heat energy a.	9 n- Sola
integra UNIT Orient coolin	V V tation ng-refr Idings Book	ystems implementation and maintenance. SOLAR-CONSCIOUS BUILDINGS and design of buildings- Passive solar heat- Thermal capacity -Insulation rigeration and air-conditioning- Space heating- Sensible and latest heat energy (s)	9 n- Sola storage
integra UNIT Orient coolin in buil	tated synthesis and synthesis	 solar-conscious Buildings- and design of buildings- Passive solar heat- Thermal capacity -Insulation rigeration and air-conditioning- Space heating- Sensible and latest heat energy (s) matme K. Suhas P. Sukhatme, "Solar energy: Principles of thermal collection 	9 n- Sola storage
integra UNIT Orient coolin in buil	ated syntation ag-refr Idings Book Sukh stora	ystems implementation and maintenance. SOLAR-CONSCIOUS BUILDINGS and design of buildings- Passive solar heat- Thermal capacity -Insulation rigeration and air-conditioning- Space heating- Sensible and latest heat energy (s)	9 n- Sola storage
integra UNIT Orient coolin in buil Text I	tated syntation ag-refriction ldings Book Sukh stora Sote 1 st ence	ystems implementation and maintenance. SOLAR-CONSCIOUS BUILDINGS and design of buildings- Passive solar heat- Thermal capacity -Insulation rigeration and air-conditioning- Space heating- Sensible and latest heat energy (s) natme.K, Suhas P. Sukhatme, "Solar energy: Principles of thermal collectinge", Tata McGraw Hill publishing Co. Ltd, 8 th edition, 2008. eris A. Kalogiru, "Solar Energy Engineering: Processes and systems", Academ dition, 2009.	9 n- Sola storage
integra UNIT Orient coolin in buil Text I 1 2	tation ag-refr ldings Book Sukh stora Sote 1 st e cence (Duf Son	 solar energy: Principles of thermal collection, 2009. (s) <l< td=""><td>9 n- Sola storage tion an nic pres Wiley</td></l<>	9 n- Sola storage tion an nic pres Wiley
integra UNIT Orient coolin in buil Text I 1 2 Refer	ated synthesis at the s	ystems implementation and maintenance. SOLAR-CONSCIOUS BUILDINGS and design of buildings- Passive solar heat- Thermal capacity -Insulation rigeration and air-conditioning- Space heating- Sensible and latest heat energy is: (s) natme.K, Suhas P. Sukhatme, "Solar energy: Principles of thermal collectinge", Tata McGraw Hill publishing Co. Ltd, 8 th edition, 2008. arris A. Kalogiru, "Solar Energy Engineering: Processes and systems", Academ dition, 2009. (s) fie.J.A, & Beckman.W.A, "Solar Engineering of Thermal Processes", John	9 n- Sola storage tion an nic pres Wiley sion",

I	Regula	ation 2	018			5	emeste	r III	-	-		Total	and the second second	and the second	30
Cate		0	-		and the second			James		3 1	1	Iours.	Alternation of the	K	с
Cate	gory	Cour	rse Co	de		C	oursel	Name		1	L		r	Р	Y.
M	1	18M	BM20	ւ	CON	иреті	SNCIE SKIL		OCIA	L	0		0	2	1
	1000	jective of lea		his cou	urse is	to:									
I	Shar	pen pro	blem	solving	g skill a	and to	improv	e thin	king ca	pabili	ty of th	ne stud	ents		
2	Hone	e soft s	kill an	d analy	tical a	bility	of stud	ents					-		
3	Enga	nge lear	mers in	ı using	langu	age pu	rposel	ully an	d coop	erative	ely		- Normal Account		
4	Expe	ertise tl	ne writ	ing and	l prese	ntatio	n skill (lo f ulfi	ll the c	orpore	ite exp	cctatio	ns		Barris Court
		tcome of this	Part of the second	1 E.	ers will	be ab	le to:	No. Contraction	1.1		2		The second		
COI	Solv	e both	analyt	ical an	d logic	al pro	blems i	in an e	ffectiv	e manr	ner				
CO2	Desi	ign and	delive	er infor	mation	n in a p	roper	manne	r						
CO3	Imp	rove th	eir pre	sentati	on skil	ls indi	vidual	iy as w	ell as a	a team	memb	Ċr			
CO-F	PO Ma	apping		The second	3.5%		1.21		-	e Vol	19.1		15	63	22
COs						P	Os							PSOs	
COS	POI	PO2	POJ	PO4	PO5	P06	P07	PO8	P09	1010	POIL	POIZ	PSOI	P\$02	PSO3
COI	3		-			•	•	•	-	•	•	•			
C02	•	•		-	•	•	•	•	•	2	•	•			
CO3				•	•	•		•	2	•	-	•			
COM			-	-				•	•	•	•	-			
C05		•			-		-	•	•	•	•	·			-
(20 (Aye)	3.00		-		-	-	-	•	2.00	2.00	•	•			
		1:5	Slight ()	Low)		2: Mod	crate (Mediun)	3:	Substa	ntial (H	igh)		

COLLEGE OF ENGINEERING NAAC Accredited Antonianidus Instruction Approved by AkTLE & Mildaed to Arens University BO 9091/2015 Ceruñed Institution Tealevapidisyam, Karer, TeonBredie.

and and and a second	UNIT I	Module - 1	6
		ng - Direction Sense Test. duction and SWOT analysis - Letter writing - types	
	UNIT II	Module - 2	6
	tude: Venn Diagrams - imunication: Phrasal ve	Data Interpretation. orbs - Volce of Valluvar.	
	UNIT III	Module - 3	6
-	itude: Averages. Imunication: Idioms an	d Phrases - Skits.	
1	UNITIV	Module - 4	6
	tinder Time and Distance	- Marking and I	an a
Apti Con	itude: Time and Distanc munication: Profix/Su UNIT V	e - Problems on Trains, Mx - Root words - Adjectives - JAM (Extempore Sj Module - 5	peoch).
Apti Con Apt	munication: Profix/Su	ffix - Root words - Adjectives - JAM (Extempore Sj Module - 5	
Apti Con Apti Con	unit v UNIT v Itude: Clooks & Calend	ffix - Root words - Adjectives - JAM (Extempore Sj Module - 5	
Apti Con Apti Con	Insunication: Profix/Su UNIT V Itudo: Clocks & Calend Insunication: Homophe Book (s)	ffix - Root words - Adjectives - JAM (Extempore Sj Module - 5	6

.

	Regulation 2019	SEMESTER II		urs / Wee	6.2 Brown Colores	45
Cate	gory Course Code	Course Name	L	T	P	C
C		ANTENNAS AND RADIATING SYSTEMS	3	0	0	3
Prere	equisite Course (s)		有"水户"。		12.00	1
Antenr	na and Wave Propagation		CONTRACTOR OF STREET			-
Cours	se Objective (s): The purpo	se of learning this course is to:	State of the second	A product of		
1	Enhance the students kn	owledge in the area of various antenna des	sign			
2	Impart knowledge about	the state of art in antenna technology.				
3	Study the antenna arrays		3			
4	Understand the concepts	of aperture antennas				
5	Design the patch antenna	IS			4	
Course	e Outcome (s) (COs):At th	e end of this course, learners will be able t	to:			
201	Compute the far field dis	tance, radiation pattern and gain of an ante	enna			
202	Explain about linear wire	antennas				
203	Compute the array factor	for an array of identical antennas			14	22
04	Describe the characterist	cs of aperture antenna				
:05	Design the Microstrip patch	antennas				19. or - 19.
	TTI TYPES OF A	NUCLEAREN				9

Wire antennas, Aperture antennas, Micro strip antennas, Array antennas Reflector antennas, Lens antennas, Radiation Mechanism, Current distribution on thin wire antenna. Fundamental Parameters of Antennas: Radiation Pattern, Radiation Power Density, Radiation Intensity, Directivity, Gain, Antenna efficiency, Beam efficiency, Bandwidth, Polarization, Input Impedance, radiation efficiency, Antenna Vector effective length, Friis Transmission equation, Antenna Temperature.

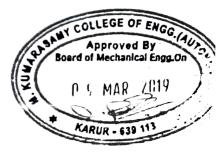
UNIT II LINEAR WIRE ANTENNAS

Infinitesimal dipole, Small dipole, Region separation, Finite length dipole, half wave dipole, Ground effects. Loop Antennas: Small Circular loop, Circular Loop of constant current, Circular loop with non uniform current.

UNIT III LINEARARRAYS

Two element array, N Element array: Uniform Amplitude and spacing, Broadside and End fire array, Super directivity, Planar array, Design consideration.

quirriculum and Syllabus | 2019 Regulation


9

	COLLEG NAAC Accred Approved by A SCI 9001:2015	JMARASAMY E OF ENGINEERING dired Autonomous Institution AICTE & Afrikated to Anna University Settled Institution ram, Karut, Tamilaada.	Ŕ
	UNIT IV	APERTURE ANTENNAS	9
Huy Hori	ygen's Field n Antennas:	Equivalence principle, radiation equations, Rectangular Aperture, Circu E-Plane, H-plane Sectoral horns, Pyramidal and Conical horns.	lar Aperture.
	UNIT V	MICROSTRIP ANTENNAS	9
Basi	c Characteri		and the state of the
Refl	c Characteri ector Antenr t Book (s)	istics, Feeding mechanisms, Method of analysis, Rectangular Patch, Ciro nas: Plane reflector, parabolic reflector, Cassegrain reflectors, Introducti	cular Patch.
Refl	t Book (s)	stics, Feeding mechanisms, Method of analysis, Rectangular Patch, Circ	cular Patch.
Refl Text	t Book (s)	istics, Feeding mechanisms, Method of analysis, Rectangular Patch, Circ nas: Plane reflector, parabolic reflector, Cassegrain reflectors, Introduction and P. Bhartia," Microstrip Antennas", Artech House, Inc., 1980. zman and G.A.Thiele, "Antenna Theory and Design", 2nd edition, John	cular Patch. ion to MIMO.
Refl Text 1 2	t Book (s) I.J. Bahl a W.L.Stutz	istics, Feeding mechanisms, Method of analysis, Rectangular Patch, Circ nas: Plane reflector, parabolic reflector, Cassegrain reflectors, Introduction and P. Bhartia," Microstrip Antennas", Artech House, Inc., 1980. zman and G.A.Thiele, "Antenna Theory and Design", 2nd edition, John	cular Patch. ion to MIMO.
Refl Text 1 2	t Book (s) I.J. Bahl a W.L.Stut: Inc.,1998	istics, Feeding mechanisms, Method of analysis, Rectangular Patch, Circ nas: Plane reflector, parabolic reflector, Cassegrain reflectors, Introduction and P. Bhartia," Microstrip Antennas", Artech House, Inc., 1980. zman and G.A.Thiele, "Antenna Theory and Design", 2nd edition, John	cular Patch. ion to MIMO. Wiley&Sons

Department	MECHANICAL ENGINE	ERIN	1G			Semest	er		1
epartment - MECHANICAL ENGINEERING Semester Hours / Total Credit Maximum Mar									
Course Code	Course Name	L	T	P	Hours	С	CA	ES	Tota
19PMEC103T	MODERN MANUFACTURING PROCESSES	3	0	0	45	3	50	50	100
Course Objectiv									
To creat	e awareness on Abrasive aided machining								
To unde	rstand electrical and electrochemical machini	ng pro	cess	es.					
To analy	se the principles of high energy aided maching	ning.		C					
To study	the surface and bulk machining processes of	silico	n wa	ter.	wit hone	10			
To intro	duce students to the major manufacture steps	in elec	ctron	IC CIF	cuit board	15.			
Course Outcom							ations		
CO1 : Un	es: derstand and grasp the significance of moder	n mach	าเทเทยู	g proc	cess and	its applie	ations		
001 14	at 6, the relation of machining process and 1	ts para	imete	ers.					
CO3 · Ext	press and appreciate the cutting edge technolo	gies a	na af	ргу и	ne same i	Of researc	in pai		
CO4 : Me	asure the stages involved in fabrication of mi	cro de	vices	Ltach	nology				
	ate new devices involved in micro fabrication	and I	ecen		CCFC				9
Unit I	ABRASIVE AIDED MACHI	NING	PR	Abr	asive flo	w machi	ning-	Magn	eto
Abrasive maching	ning – water jet machining - ultrasonic r	nachir	ing	-AUI	asive no	= proces	s para	ameter	·s –
rheological Abra	sive flow machining- construction working	princi	pie -	- step	is - types	proces	P		
derivations - pro	blems, merits, demerits and applications.			C DE	OCESS	FS			9
Unit II EL	ECTRICAL AND CHEMICAL AIDED M	ACH	ININ	<u>G PR</u>	OCESS	ES	na - N	laskan	ts -
Wire cut EDM -	Electric discharge machining – Electrochemi	cal ma	ichini	ing –	chemical	lasian - r	nerits	deme	rits
Electrochemical	grinding - construction – principle – types –	contro	5I - C	ircuit	s = 1001 C		norna,	uomo	
and applications.	Hybrid Machining.								9
Unit III HIG	GH ENERGY AIDED MACHINING PRO	CESS	ES		ining	Ion hear	n mac	hining	7 -
Laser beam ma	chining – Electron beam machining – Pla	asma	arc i	nach	nnig – problem	s merits	dem	erits a	and
construction wo	rking principle types – process parameter	– der	valio	ms –	problem	is, merits	, ucin	•••••	
applications.									9
Unit IV FA	BRICATION OF MICRO DEVICES	ion	ioni	molar	tation	etching _	metal	lizatio	-
Semiconductors	- Si wafer - planarization - Oxidation - diffus	51011		npiai		cioning -	metal		
	a and bulk machining -1.10 A Process								9
oonding - surfac	e and bulk machining - LIGA Process								9
bonding - surfac	CDOEADDICATION TECHNOLOGY	amma	ble d	evice	s and AS	SIC – elec	tronic	mater	-
bonding – surface	CROFABRICATION TECHNOLOGY board hybrid and MCM technology – progr stereolithography – Solid free form fabrication	amma	ble d	evice	s and AS	SIC – elec Mount Te	ctronic	mate	-

KL	EXENCES.
1	Brahem T. Smith, Advanced Machining I.F.S. UK 2016.
2	Jaeger R.C., Introduction to Microelectronic Fabrication Addison Wesley, 2 rd Edition, 1998.
3	tain V.K. Micromanufacturing Processes, CRC Press, 2012.
4	Julian W. Gardner, Vijay K Varadan and Osama O Awadelkarim, Microsensors MEMS and Smart devices, John Willey, 2013.
5	Pandey P.C. and Shan H5 Modern Machining Processes, Standard Publishing Co., 1 st Edition, 1980.
6	Serope Kalpakjian and Steven R. Schmid- Manufacturing Process for Engineering Material – Pearson Education, 6 th Edition, 2018

Department	MECHANICAL ENGIN	EERI	NG			Semest	er		H										
Course Code	Course Name	Hours / Week												Week Tota		Credit	Max	cimum	Marks
		L	J.	P	Hours	С	CA	ES	Total										
19PMEC109T	MATERIAL TESTING AND CHARACTERIZATION TECHNIOUES	3	0	0	45	3	50	50	100										

Course Objective (s):

On completion of the course the students are expected to be knowledgeable in microstructure evaluation, crystal structure analysis, electron microscopy, Chemical Thermal Analysis, static and dynamic mechanical testing methods.

Course Outcomes:

This course aims to impart knowledge on various techniques of material characterization.

Unit l

MICRO AND CRYSTAL STRUCTURE ANALYSIS

Principles of Optical Microscopy – Specimen Preparation Techniques – Polishing and Etching – Polarization Techniques – Quantitative Metallography – Estimation of grain size – ASTM grain size numbers – Microstructure of Engineering Materials - Elements of Crystallography – X- ray Diffraction

- Bragg's law - Techniques of X-ray Crystallography - Debye - Scherer camera - Geiger Diffractometer - analysis of Diffraction patterns - Inter planer spacing - Identification of Crystal Structure, Elements of Electron Diffraction.

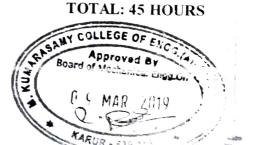
Unit II ELECTRON MICROSCOPY

Interaction of Electron Beam with Materials – Transmission Electron Microscopy – Specimen Preparation – Imaging Techniques – BF & DF – SAD – Electron Probe Microanalysis – Scanning Electron Microscopy – Construction & working of SEM – various Imaging Techniques – Applications- Atomic Force Microscopy-Construction & working of AFM - Applications.

Unit III CHEMICAL AND THERMAL ANALYSIS

Basic Principles, Practice and Applications of X-Ray Spectrometry, Wave Dispersive X-Ray Spectrometry, Auger Spectroscopy, Secondary Ion Mass Spectroscopy, Fourier Transform Infra Red Spectroscopy (FTIR)- Proton Induced X-Ray Emission Spectroscopy, Differential Thermal Analysis, Differential Scanning Calorimetry (DSC) And Thermo Gravitymetric Analysis (TGA).

Unit IV MECHANICAL TESTING – STATIC TESTS


Hardness – Brinell, Vickers, Rockwell and Micro Hardness Test – Tensile Test – Stress – Strain plot – Proof Stress – Torsion Test - Ductility Measurement – Impact Test – Charpy & Izod – DWTT - Fracture Toughness Test, Codes and standards for testing metallic and composite materials.

Unit V MECHANICAL TESTING – DYNAMIC TESTS

 9

 Fatigue - Low & High Cycle Fatigues - Rotating Beam & Plate Bending HCF tests - S-N curve - LCF tests

 Crack Growth studies - Creep Fests - LM parameters - AE Tests-modal analysis - Applications of Dynamic Tests.

9

10

8

M.KUMARASAMY COLLEGE OF ENGINEERING (Autonomous) – KARUR 639113

Department	MECHANICAL ENGINE	ERI	NG			Semes	ter		III
Course Code	Course Name	Hours / Week		Total Hour	Credi t	Maximum Marks			
	Course (vanie	L	Т	Р	s	С	C A	ES	Total
19PMEE020T	NANOTECHNOLOGY	3	0	0	45	3	50	50	100

Course Objective (s):

To expose the students to the evolution of Nano systems, to the various fabrication techniques. Also to impart knowledge to the students about nano materials and various nano measurements techniques.

Course Outcomes:

> To inspire the students to expect to the trends in development and synthesizing of nano systems and measuring systems to nano scale.

Unit I **OVER VIEW OF NANOTECHNOLOGY**

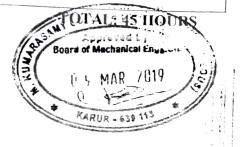
Definition - historical development - properties, design and fabrication Nanosystems, , working principle ,applications and advantages of nano system. Nanomaterials - ordered oxides - Nano arrays - potential health effects

Unit II NANODEFECTS, NANO PARTILES AND NANOLAYERS

Nanodefects in crystals - applications - Nuclear Track nano defects. Fabrication of nano particles LASER ablation - sol gels - precipitation of quantum dots.Nano layers - PVD,CVD ,Epitaxy and ion implantation - formation of Silicon oxide- chemical composition - doping properties - optical properties

Unit III NANOSTRUCTURING

Nanophotolithography - introduction - techniques - optical - electron beam - ion beam - X-ray and Synchrotron - nanolithography for microelectronic industry - nanopolishign of Diamond - Etching of Nano structures - Nano imprinting technology -Focused ion beams - LASER interference Lithography nanoarrays -Near-Field Optics - case studies and Trends


Unit IV SCIENCE AND SYNTHESIS OF NANO MATERIALS

Classification of nano structures - Effects of nano scale dimensions on various properties - structural, thermal, chemical, magnetic, optical and electronic properties fluid dynamics -Effect of nano scale dimensions on mechanical properties - vibration, bending, fracture

Nanoparticles, Sol-Gel Synthesis, Inert Gas Condensation, High energy Ball Milling, Plasma Synthesis, Electro deposition and other techniques. Synthesis of Carbon nanotubes - Solid carbon source based production techniques - Gaseous carbon source based production techniques - Diamond like carbon coating. Top down and bottom up processes.

CHARACTERIZATION OF NANO MATERIALS Unit V

Nano-processing systems - Nano measuring systems - characterization - analytical imaging techniques microscopy techniques, electron microscopy scanning electron microscopy, contocal LASER scanning microscopy - transmission electron microscopy, transmission electron microscopy, scanning tunneling microscopy, atomic force microscopy, diffraction techniques - spectroscopy techniques spectroscopy, 3D surface analysis - Mechanical, Magnetic and thermal properties - Nano positioning

6

8

8

12

Department	M.KUMARASAMY COLLEGE OF ENGINEERIN MECHANICAL ENGINE					Semest	er		II
Department	MECHANICAL ENGINE	-	four	·s /	Total	Credi	N	laxin	ium
Course Code	Course Name		Wee		Hour	t		Mar	ks
	Course round	L	Т	Р	s	C	C A	ES	Tota
19PMEE009T	POLYMERS AND COMPOSITE MATERIALS	3	0	0	45	3	50	50	100
composites	natrix material, reinforcements of polyme								natrix
Course Outcomes	:								
<u>composite</u> :	t knowledge on types, physical pr s, metal matrix composites and ceramics	oper matr	ties ix co	and mpo	proces site.	sing of	poly	mer	
	SSING OF POLYMERS			0					. 9
Moulding – Castir	Classification of Polymers – Properties - Properties - Extrusion – Injection Moulding ang – Thermo Forming. General Machinin oining of Plastics – Thermal bonding – A	-B	low	Mou ties	lding -	Compres	sion	and T	ransfer
Unit II FIB	ERS AND MATRIX MATERIALS								9
sheet Moulding C	composites: hand layup, spray, the moulding - bag moulding, compressio compound – thermoplastic matrix con laying, injection moulding – interfaces in f PMCs.	n mo	ould	ing v	vith Bulk	c Mouldi	ng Co	ompoi	und and
	SSING OF METAL MATRIX COMP	POSI	TES	5					
Metallic matrices: Solid state, in situ f	aluminium, titanium, magnesium, copp abrication techniques – diffusion bondir al properties – machining of MMCs – App	ber a	lloy	s – j	processin netallurg	ng of M gy techni	MCs:	liqui inter	9 d state faces in
nit V PROCE	SSING OF CERAMIC MATRIX CO CARBON COMPOSITES	MP	OSI	TES	AND (CARBO	N-	-	9
Processing of CMCs hemical reaction te nterfaces in CMC composites – applic	s: cold pressing, sintering, reaction bond chniques chemical vapour deposition, c 2s – mechanical properties and app eations	ling, hem licati	liqu ical ions	iid in vapc of	CMCs	- Carb	, sol-g on-ca GE OF	gel – rbon	445
					THUN W	0		2019	Da HOUS

M.KUMARASAMY COLLEGE OF ENGINEERING (Autonomous) - KARUR 639113

۰

7. 7

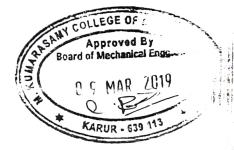
RE	FERENCES:
1.	Krishnan K Chawla, Composite Materials: Science and Engineering, International Edition, Springer, 2012, ISBN:978-0-387-74364-6.
2.	Mallick P.K., Fiber Reinforced Composites: Materials, Manufacturing and Design, CRC press, New Delhi, 2010, ISBN:0849342058.
3.	Jamal Y. Sheikh-Ahmad, Machining of Polymer Composites, Springer, USA, 2009. ISBN: 978- 0-387-35539-9.
4.	Mallick, P.K. and Newman.S., Composite Materials Technology, Hanser Publishers, 2003. Harold Belofsky, Plastics, Product Design and Process Engineering, Hanser Publishers, 2002.
5.	Seamour, E.B. Modern Plastics Technology, Prentice Hall, 2002 Said Jahanmir, Ramulu M. and Philp Koshy, Machining of Ceramics and Composites, Marcel Dekker Inc., New York, 1999, ISBN: 0-8247-0178-x. ASM Handbook – Composites, Vol-21, 2001, ISBN: 978-0-87170-703-1.

GE OF ENC Approved By Board of Mechanical Engelow KUNAR (ence 2019 n MAR KARUR - 639 113

M KUMARASAMY COLLEGE OF ENGINEERING (Autonomous) - KARLIR 639113

Department	MECHANICAL ENGINE	ERI	NG			Semest	ter		Ш						
Course Code	Course Name		lour Wèe		Total Hour	Credi t	N	1axim Mar							
course coue		L	Т	Р	S		S		S	S		C	C A	ES	Tota
19PMEE019T	CONCEPTS OF GREEN MANUFACTURING	3	0	0	45	3	50	50	100						
 ➢ To enligi ➢ To enligi environn ➢ To impar ➢ To impar ➢ To impar ➢ To impar Course Outcom CO1 : U CO2 : U CO3 : U CO3 : U CO4 : H CO5 : H Unit I AIR Primary and S Standards, Met turbulence-Pun 	rt the knowledge of fire safety and its product the knowledge about the need, procedure	se a out actic and ls m ls m ls m its p URI unts, ture	nd it wate on. l bend inimi inimi orodu EME Ind laps on to	s effe r po efits izatio izatio ction NT ustria e Rat the a	ects on t llution of Green on or pre on or pre on or pre a. al Pollu tes and s atmosph	he enviro and its <u>n-Co rati</u> evention evention tion, Ar Stability- ere dispe	effec ng. of air of noi of wat nbient wind ersion	pollu se pol ter pol t air veloc equat	ution. Ilution Ilution quality ity and ion-the						
pollutants-stockoxidants and oxUnit IINOFrequency andEnvironment aand Noise levetreatment, Tree	k sampling, analysis of air pollutants-sulpl zone ISE POLLUTION AND CONTROL Sound Levels, Units of Noise based powe nd properties, Natural and Anthrogénic Noi rels, Masking of sound, Types, Kinetics, catment of noise at source, Path and R	hur er ra se S Sele	dioxi dio, o ource ection,	conto es, M n of Sou	urs of L differen urces of	dioxide, oudness. Instrum t reactor noise,	Effect ents for s use	n mor ct of h or freq d for	9 uman, uency waste						
	Health hazards, thermal Comforts, Heat Islar TER DEMAND AND WATER QUALIT		ffects	s, Rad	diation E	ffects.			9						
Factors affecting odour, Radio a Point and nor different uses. Unit IV FIR	ng consumption, Variation, Contaminants in activity in water, Criteria, for different impu- point Source of pollution, Major polluta Global water crisis issues. RE SAFETY	n wa iritie ants	es in of V	water Water	r for por r, Water	table and Quality	non j Requ	portab uireme	ste and le use, ent for 9						
Prevention te preparedness,		cts of the sting o	on Er n Sy	viro /stem	nmental, , conti	Property	and plan,	Humai Eme	rgency						
	EEN CO-RATING tprint, Need for Green Co-rating systems,	Inte	nt S.	veter	1 200-0-	oh W		A	9 ssment						
Process, types	of ratings, Green Co-Benefits, Case studies	of (Green	Co-	Rating.			, Asse							
1					AL ANNA	Appro oard of Mach	e OF EN ved By anical En	89	NON.						

KARUR - 639 113


F. L 2

M.KUMARASAMY COLLEGE OF ENGINEERING (Autonomous) – KARUR 639113

ALLENCE COLOR

÷.

REF	TERENCES:
1.	Dornfield David, Green Manufacturing, Springer, 2013
2.	Davim J Paulo, Green Manufacturing Processes and Systems, Springer, 2013
3	Cairnerss and Francis - Costing the earth - Harvard Business School Press - 2009
4	World Commission on Environment and Development (WCED), Our Common Future, Oxford
	University Press 2005.
5	Green Co Case Study Booklet, CII – Sohrabji Godrej Green Business Centre, 2015.
6	Dornfield David, Green Manufacturing, Springer, 2013

- 7

Department	MECHANICAL ENGINEERING		A- ()			Sem	ester		I				
Course Code	Course Name	Hours / Week		Hours / Week				Week		Credit	Ma	ximum	Marks
	Course waine	L	Т	P	Hours	С	CA	ES	Total				
19PMEC101T	ADVANCED MATERIALS TECHNOLOGY	3	0	0	45	3	50	50	100				

Course Objective (s):

To make the students to understand on elastic, plastic and fractured behavior of engineering materials.

To train the students in selection of metallic and non-metallic materials for the various engineering applications.

Course Outcomes:

To impart knowledge on the advanced concepts of material technology

Unit I ELASTIC AND PLASTIC BEHAVIOR

Elasticity in metals and polymers Anelastic and visco-elastic behaviour – Mechanism of plastic deformation and non metallic shear strength of perfect and real crystals – Strengthening mechanisms, work hardening, solid solutioning, grain boundary strengthening, poly phase mixture, precipitation, particle, fibre and dispersion strengthening. Effect of temperature, strain and strain rate on plastic behaviour – Super plasticity – Deformation of non crystalline materials.

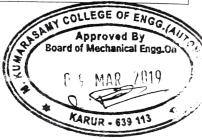
Unit II FRACTURE BEHAVIOUR

Griffith's theory, stress intensity factor and fracture toughness – Toughening mechanisms – Ductile, brittle transition in steel – High temperature fracture, creep – Larson Miller parameter – Deformation and fracture mechanism maps – Fatigue, low and high cycle fatigue test, crack initiation and propagation mechanisms and Paris law. Effect of surface and metallurgical parameters on fatigue – Fracture of non metallic materials – Failure analysis, sources of failure, procedure of failure analysis.

Unit III SELECTION OF MATERIALS

Motivation for selection, cost basis and service requirements – Selection for mechanical properties, strength, toughness, fatigue and creep – Selection for surface durability corrosion and wear resistance – Relationship between materials selection and processing – Case studies in materials selection with relevance to aero, auto, marine, machinery and nuclear applications – Computer aided materials selection.

Unit IV MODERN METALLIC MATERIALS


Dual phase steels, High strength low alloy (HSLA) steel, Transformation induced plasticity (TRIP) Steel, Maraging steel, Nitrogen steel – Intermetallics, Ni and Ti aluminides – smart materials, shape memory alloys – Metallic glass and nano crystalline materials.

Unit V NON METALLIC MATERIALS

Polymeric materials – Formation of polymer structure – Production techniques of fibers, foams, adhesives and coating – structure, properties and applications of engineering polymers – Advanced structural ceramics, WC, TIC, TaC, Al₂O3, SiC, Si₃N₄ CBN and diamond – properties, processing and applications.

REFERENCES:

	1.	Ashby M.F., Material Selection in Mechanical Design, 3 rd Edition, Butter Worth 2005.
	2.	ASM Hand book, Vol.11, Failure Analysis and Prevention, (10 th Edition), ASM, 2002.
	3.	Charles, J.A., Crane, F.A.A. and Fumess, J.A.G., Selection and use of engineering materials, (3 rd
	4.	edition), Butterworth-Heiremann, 2001.
Γ	5.	Thomas H. Courtney, Mechanical Behaviour of Materials, (2 nd edition), McGraw Hill, 2000
	6.	George E.Dieter, Mechanical Metallurgy, McGraw Hill, 1988

10

10

10

8

1412 - Al Anton M. Mai Sommala Maria M.

P. Optilis A Characteristic in C. B. B.
 P. Martinez, M. Martinez, M. Martinez, A. Martinez, A. Martinez, M. M

3

Departmen	t MECHANICAL ENGINEE	RIN	G	-		Semest	er		11
Course Co		- Protection of the same	Hours / Week		Total	Credit Max		timum	Marks
	course traine	L	T	Р	Hours	С	CA	ES	Total
19PMEC10	MANUFACTURING	3	0	0	45	3	50	50	100
Course Obj	ective (s):	1							
➤ To field	make use of the above techniques while modeling is.	g an	d sol	ving	the engin	eering pr	roblem	ıs of d	lifferen
Course Out									
> Toii	ntroduce the various optimization techniques and t	their	adva	incen	nents.				
Unit I	INTRODUCTION								5
Optimization	n – Historical Development – Engineering applica	tion	s of c	optim	ization –	Statemer	nt of a	n	
opunnzano	n problem – classification of optimization problems			,					
Unit II	CLASSIC OPTIMIZATION TECHNIOUES								10
Linear progr duality in LF	amming - Graphical method – simplex method – P – Parametric Linear programming – Goal Program	dual 1min	simp g.	lex n	nethod -	revised si	implex	meth	od –
Unit III	NON-LINEAR PROGRAMMINC								9
Introduction	- Lagrangeon Method - Kuhn-Tucker conditions	- 0	uadra	tic n	rogramm	ing Ser	arable		,
	g – Stochastic programming – Geometric programm	ning.	uuuit	nie p	iogramm	ing – Sep	alaure		
ontry	INTEGER PROGRAMMING AND DYNAM AND NETWORK TECHNIQUES	AIC	PRO						12
Integer prog Dynamic Pro	ramming - Cutting plane algorithm, Branch and	bour ing 1	nd teo Dyna	chniq mic I	ue, Zero- Programm	one impl	icit en vork 1	umera	ation –
		xima	l flov	v proł	olem.			contra	ques –
Unit V	ADVANCES IN SIMULATION rithms – simulated annealing – Neural Network and								9

TOTAL: 45 HOURS

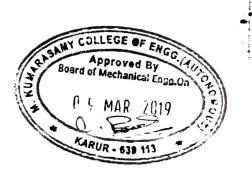
REF	ERENCES:
1	R. Panneerselvam, -Operations Researchl, Prentice Hall of India Private Limited, New Delhi 1 2005.
5	Ravindran, Philips and Solberg, Operations Research Principles and P.
	Ravindran, Philips and Solberg, Operations Research Principles and Practice, John Wiley & Sons, Singapore, 1992
-	

COLLEGE OF ENG Approved By of Mechanical Engg.On KUNN Board 0 F. 4 MAR 2019 KARUR - 639 113

	Department	MECHANICAL ENGI	VEERI	NG			Semes	ter		Ι
	Course Code	Course Name	I	lour Wc3		Total Hour	Credi t	N	Aaxin Mar	
		Course Name	L	T	Р	S	С	C A	ES	Tota
	19PMEE005 T	MANUFACTURING OF AUTOMOTIVE PARTS	3	0	0	45	3	50	50	100
(Course Objectiv	e (s):								
	 To familia To impart To impart in automo 	knowledge on material and manufac	in man ring teo uring te	ufac chnic chni	turing jues o ques	g of auto of piston of engin	mobile o valves a e blocks	compo and ba s, cabl	nents attery les and	parts 1 lock
0	Course Outcome	28:								
	CO1: ha	ve the knowledge about material requir	ements	, its	recyc	ling and	life cycl	e	aspe	ects.
	CO2: ga	in an insight over the latest materials ac	lopted i	in au	tomo	bile mar	ufacture		-	
		ve the knowledge of methods adopt rts.	ed in	manı	ıfactı	are of p	iston, va	alves	and 1	oattery
	•	now the methods of manufacturing engi	ne bloc	k ca	hles	and lock	s in	autom	ahila	ť
	CO5: hav	e the idea of various manufacturing me	thods c	of aut	omo	bile struc	s m a	transn		
T	par	S.					, ture,	ci unon	1155101	
		ERIAL NEEDS IN AUTOMOBILE materials in automotive tests – recycl								9
1	processes. Renev	future. Advanced in manufacturing of magnesium alloys in automotive in wable materials, barriers and incention								
U	nit II	tive applications MATERIALS AND TECHNOLOG	IES FO)R A	UTO	MOBI	tes - cor	nposit	te mai	terials
U Ir	Init II	tive applications MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet	IES FO	DR A	UTO	DMOBI	tes - cor	nposit	te mai	terials
U Ir ga	ntroduction – st alvannealed stee rganic solid lubri	MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in	IES FC et – "N pe high	DR A Nano n lub	UT Hile	DMOBII n" – "E on galva	LE HT" – unnealed	nposit high	te mai streng	terials 8 gth
	Init II ntroduction – st alvannealed stee rganic solid lubri Init III MANU	MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in JFACTURING OF PISTON, VALVI	IES F(et - "N pe high n auton ES AN	DR A Nano 1 lub 1 lub 1 obil	UT Hile ricati es –	DMOBI n'' - "Eon galvauses of p	LE HT" – Innealed lastics in	nposit high steel autor	streng sheets nobile	terials 8 gth 5 - es.
U Ir ga Of U Ir	Init II ntroduction – st alvannealed stee rganic solid lubri Init III MANU ntroduction ma	MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in JFACTURING OF PISTON, VALVI nufacturing of auto piston – manufact	IES F(et - "N pe high n auton ES AN	DR A Nano n lub nobil D BA	UT Hile ricati es – 1	DMOBII n" – "E on galva uses of p ERY PA	tes - cor LE HT" – unnealed lastics in RTS	nposit high steel autor	streng sheets nobile	8 gth s - es. -10
U Ir ga of U Ir	Init II ntroduction – st alvannealed stee rganic solid lubri Init III MANU ntroduction ma f piston rings –	MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in UFACTURING OF PISTON, VALVI nufacturing of auto piston – manufact manufacturing of lead storage batte	IES F(et - "N pe high n auton ES AN	DR A Nano n lub nobil D BA	UT Hile ricati es – 1	DMOBII n" – "E on galva uses of p ERY PA	tes - cor LE HT" – unnealed lastics in RTS	nposit high steel autor	streng sheets nobile	8 gth s - es. -10
	Init II Introduction – st alvannealed stee rganic solid lubri Init III MANU Introduction ma f piston rings – nanufacturing of a	MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in UFACTURING OF PISTON, VALVI nufacturing of auto piston – manufact manufacturing of lead storage batter automobile silencer.	IES F(et – "M pe high n auton ES AN uring c ery. Ma	DR A Nano n lub nobil D BA of pir anufa	UT(-Hile ricati es – 1 ATTI as for acturi	DMOBII n" – "E on galva uses of p CRY PA automo	LE HT" – unnealed lastics in RTS biles – r alve and	nposit high steel autor	streng sheets nobile	terials 8 gth 5 - es. 10 ng
U Ir ga or U Ir of m U M	Init II Introduction – st alvannealed stee rganic solid lubri Init III MANU Introduction ma f piston rings – anufacturing of a init IV MANU fanufacturing of	MATERIALS AND TECHNOLOG MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in JFACTURING OF PISTON, VALVI nufacturing of auto piston – manufacturing automobile silencer. FACTURING OF ENGINE BLOCH automobile chain – manufacturing of	IES FC et – "N pe high n autom ES AN uring c ery. Ma	DR A Nano n lub nobil D BA of pir anufa	UT(-Hile ricati es – 1 ATTI as for acturi	DMOBII n" – "E on galva uses of p ERY PA automo ing of v	tes - cor LE HT" – Innealed lastics in RTS biles – r alve and	nposit high steel a autor nanuf d valv	streng sheets nobile acturi ze set	8 8 9 9 10
U Ir gi of U Ir of m U M lir	Init II Introduction – st alvannealed stee rganic solid lubri Init III MANU Introduction ma f piston rings – anufacturing of a Init IV MANU fanufacturing of ner – manufact	MATERIALS AND TECHNOLOG MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in JFACTURING OF PISTON, VALVI nufacturing of auto piston – manufact manufacturing of lead storage batter automobile silencer. FACTURING OF ENGINE BLOCH automobile chain – manufacturing of uring of automobile control cable –	IES FC et – "N pe high n autom ES AN uring c ery. Ma	DR A Nano n lub nobil D BA of pir anufa	UT(-Hile ricati es – 1 ATTI as for acturi	DMOBII n" – "E on galva uses of p ERY PA automo ing of v	tes - cor LE HT" – Innealed lastics in RTS biles – r alve and	nposit high steel a autor nanuf d valv	streng sheets nobile acturi ze set	8 8 9 9 10
U Ir g o U Ir of M Ir of M Ir	Init II Introduction – st alvannealed stee rganic solid lubri Init III MANU Introduction ma f piston rings – anufacturing of a init IV MANU fanufacturing of anufacturing of anufacturing of anufacturing of a	MATERIALS AND TECHNOLOG MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in JFACTURING OF PISTON, VALVI nufacturing of auto piston – manufact manufacturing of lead storage batter automobile silencer. FACTURING OF ENGINE BLOCH automobile chain – manufacturing of uring of automobile control cable – auto locks.	IES FC et – "N pe high n autom ES AN uring c ery. Ma C, CAF C cylinc - manu	DR A Nano n lub nobil D BA of pir anufa SLES trica	UT(-Hile ricati es – 1 ATTI as for acturi	DMOBII n" – "E on galva uses of p ERY PA automo ing of v	tes - cor LE HT" – Innealed lastics in RTS biles – r alve and	nposit high steel a autor nanuf d valv	streng sheets nobile acturi ze set	8 8 9 9 10
U Ir g U U Ir of U Ir of M Ir of M Ir	Init II Init II Introduction – st alvannealed stee rganic solid lubri Init III MANU ntroduction f piston rings – anufacturing of a Init IV MANU Init IV MANU	MATERIALS AND TECHNOLOG MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in UFACTURING OF PISTON, VALVI nufacturing of auto piston – manufact manufacturing of lead storage batter automobile silencer. FACTURING OF ENGINE BLOCH automobile chain – manufacturing of uring of automobile control cable – automobile silencer. FACTURING OF TRANSMISSION	IES FC et – "N pe high n auton ES AN Uring c ery. Ma C, C.AF C cylinc - manu	DR A Vano n lub nobil D B of pir anufa BLES trica trica	AUT(-Hile ricati es – 1 ATTI as for acturi S AN I blo uring	DMOBIN n" – "E on galva uses of p CRY PA automo ing of v D LOCI ck. Man of eng	LE HT" – unnealed lastics in RTS biles – r alve and S ufacturin ine mot	nposit high steel n autor manuf d valv	streng sheets nobild acturi e set	8 gth 5 - ess. -10 ng - - - - - - - - - - - - - -
U Ir ga or U Ir of M Ir of M Ir of M Ir M	Init II Init II Introduction – st alvannealed stee rganic solid lubri Init III MANU Init IV MANU	MATERIALS AND TECHNOLOG MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in JFACTURING OF PISTON, VALVI nufacturing of auto piston – manufactur manufacturing of lead storage batter automobile silencer. FACTURING OF ENGINE BLOCH automobile chain – manufacturing of uring of automobile control cable – auto locks. FACTURING OF TRANSMISSION automobile chassis and other technology	IES FC et – "N pe high n autom ES AN uring c ery. Ma C, C.AF C cylinc - manu	DR A Nano n lub nobil D BA of pir anufa SLES trica trica	AUT(-Hile ricati es – 1 ATTI ns for acturi S AN I blo uring	DMOBII n" – "E on galva uses of p ERY PA automo ing of v D LOCI ck. Man of eng	tes - cor LE HT" – Innealed lastics in RTS biles – r alve and S ufacturin ine mod	nposit high steel nanuf d valv	streng sheets nobile acturi ze set cylind	8 gth 3 - es. -10 ng -8 -7 8 -7 10
U Ir g U Ir of M Ir of M Ir of M Ir	Init II Init II Introduction – st alvannealed stee rganic solid lubri Init III MANU Init IV MANU Init V MANU Init V MANU Init V MANU	MATERIALS AND TECHNOLOG MATERIALS AND TECHNOLOG eel sheets – high strength steel sheed l sheets – development of inorganic ty cant technology – uses of aluminium in UFACTURING OF PISTON, VALVI nufacturing of auto piston – manufactur manufacturing of lead storage batter automobile silencer. FACTURING OF ENGINE BLOCH automobile chain – manufacturing of uring of automobile control cable – automobile chasis and other technor disc brake – Manufacturing of here	IES FC et – "N pe high n auton ES AN uring c ery. Ma C, CAE cylinc - manu V PAR blogies.	DR A Nano n lub nobil D BA of pir anufa sLES trica ifact TS Ma	AUT(-Hile ricati es – 1 ATTI ns for acturi S AN I blo uring	DMOBII n" – "E on galva uses of p ERY PA automo ing of v D LOCI ck. Man of eng	tes - cor LE HT" – innealed lastics in RTS biles – r alve and SS ufacturir ine mon of autom	nposit high steel nanuf d valv ng of ulding	streng sheets nobile acturi ze set cylind pad	8 3
U Ir go U Ir of m U Min	Init II Init II Introduction – st alvannealed stee rganic solid lubri Init III MANU Init IV MANU Init IV MANU Init IV MANU Init V MANU anufacturing of an	MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in UFACTURING OF PISTON, VALVI nufacturing of auto piston – manufact manufacturing of lead storage batter automobile silencer. FACTURING OF ENGINE BLOCH automobile chain – manufacturing of uring of automobile control cable – automobile chais and other technoc disc brake – Manufacturing of bragear – casting method – forming method	IES FC et – "N pe high n auton ES AN Uring c ery. Ma C, CAE Cylinc - manu N PAR Nogies. Ike dru	DR A Vano n lub nobil D BA of pir anufa BLES Irica Ifact FS Ma	AUT(-Hile ricati es – 1 ATTI as for acturi S AN I blo uring nufac	DMOBII n" – "E on galva uses of p CRY PA automo ing of v D LOCI ck. Man of eng	tes - cor LE HT" – unnealed lastics in RTS biles – r alve and S ufacturing ine mon of autom ing of	nposit high steel nanuf d valv ng of ulding	streng sheets nobild acturi 'e set cylind pad body blank	8 gth 6 - - - - - - - - - - - - 10 - - - 10
U Ir go U Ir of m U Min	Init II Init II Introduction – st alvannealed stee rganic solid lubri Init III MANU Init IV MANU Init IV MANU Init IV MANU Init V MANU anufacturing of an	MATERIALS AND TECHNOLOG MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in JFACTURING OF PISTON, VALVI nufacturing of auto piston – manufactur manufacturing of lead storage batter automobile silencer. FACTURING OF ENGINE BLOCH automobile chain – manufacturing of uring of automobile control cable – auto locks. FACTURING OF TRANSMISSION automobile chassis and other technology	IES FC et – "N pe high n auton ES AN Uring c ery. Ma C, CAE Cylinc - manu N PAR Nogies. Ike dru	DR A Vano n lub nobil D BA of pir anufa BLES Irica Ifact FS Ma	AUT(-Hile ricati es – 1 ATTI ns for acturi S AN l blo uring nufac - Ma der n	DMOBII n" – "E on galva uses of p CRY PA automo ing of v D LOCI ck. Man of eng	tes - cor LE HT" – unnealed lastics in RTS biles – r alve and S ufacturing ine mon of autom ing of	nposit high steel nanuf d valv ng of ulding	streng sheets nobild acturi 'e set cylind pad body blank	8 gth 6
U Ir g o U Ir of m U Ir of M Ir of M Ir of M Ir M I M I M	Init II Init II Introduction – st alvannealed stee rganic solid lubri Init III MANU Init IV MANU Init IV MANU Init IV MANU Init V MANU anufacturing of an	MATERIALS AND TECHNOLOG eel sheets – high strength steel sheet l sheets – development of inorganic ty cant technology – uses of aluminium in UFACTURING OF PISTON, VALVI nufacturing of auto piston – manufact manufacturing of lead storage batter automobile silencer. FACTURING OF ENGINE BLOCH automobile chain – manufacturing of uring of automobile control cable – automobile chais and other technoc disc brake – Manufacturing of bragear – casting method – forming method	IES FC et – "N pe high n auton ES AN Uring c ery. Ma C, CAE Cylinc - manu N PAR Nogies. Ike dru	DR A Vano n lub nobil D BA of pir anufa BLES Irica Ifact FS Ma	AUT(-Hile ricati es – 1 ATTI ns for acturi S AN l blo uring nufac - Ma der n	DMOBII n" – "E on galva uses of p CRY PA automo ing of v D LOCI ck. Man of eng	tes - cor LE HT" – unnealed lastics in RTS biles – r alve and S ufacturing ine mon of autom ing of	nposit high steel nanuf d valv ng of ulding	stren shee nobi actur e se cylin pac body	at ng ts le rii t t t t t t t t

M.KUMARASAMY COLLEGE OF ENGINEERING (Autonomous) – KARUR 639113

Manufacturing of auto tubes and flaps. Heat treatment of automobile components – forging technologies of automobile parts – Manufacturing of Torque Converters- painting technology of automobiles - Role of Nanotechnology in Automotive Industries.


TOTAL: 45 HOURS

REFERENCES:

A DE LANA

- 1. Ahmed Elmarkkbi, Advanced Composite Materials for Automotive Applications, Wiley publications, 2014.
- 2. Brian Cartor, Patric Grant, Automotive Engineering Light Weight, Functional and Novel materials, Taylor and Francis, CRC Press, 2008.
- 3. Gupta K.M, Automobile Engineering Vol.I and II, Umesh Publishers, 2000.
- 4. Joao Paulo Carmo, New Advances in Vehicular Technology and Automotive Engineering, JanezaTrdine publisher, 2012.

5. Kirpal Singh, Automobile Engineering, Vol.I and II, Standard Publishers, New Delhi, 1997.

M.KUMARASAMY COLLEGE OF ENGINEERING (Autonomous) - KARUR 639113

Department	M.KUMARASAMY COLLEGE OF ENGI				s) – KARU	R 639113			
epartment	MECHANICAL E	NGINEER	RING	5		Semest			II
Course Cod	e Course Name		lour Wee		Total Hours	Credit	N	1axin Mar	
		L	Т	Р	mours	С	CA	ES	Total
19PMEE00		AICS 3	0	0	45	3	50	50	100
Course Obje]	1	1	1		
To ma to app	ke the students familiarize with var	ious conce	pts o	f Erg	gonomics	s, so that	studer	nts wi	ll able
Course Oute	ly the concepts of ergonomics to Des omes:	sign of man	– ma	ichin	e system	•			
≻ To int	roduce the concepts of Ergonomics a	nd to indica	ite th	e are	as of Ap	plications			
Unit I 🛛 IN	NTRODUCTION								9
Concepts of	human factors engineering and en	rgonomics	– M	lan -	- machin	e system	and	desig	'n
philosophy -	- Physical work – Heat stress – manu	al lifting –	work	post	ure – rep	etitive m	otion.		
Unit II I	I ANTHROPOMETRY						-		9
	mensions of the human body as a	working m	achir	ne –	Motion	size rela	tionsh	ips -	
	c anthropometry – Anthropometric ai								
	l design - Procedure for anthropomet		•	•		0	-		
	DECLON OF OVOTENCO				-0				0
Unit III	DESIGN OF SYSTEMS Controls – Workplace – Seating – W	7 1			1		1 11	1 4	9
	sign of visual displays – Design for s		5 D	, ui ati		est period			001
Unit IV	ENVIRONMENTAL FACTORS	S IN DESI	GN						9
 use of p (reflected) l control - M reduction of 	e – Humidity – Noise – Illumination hotometers – Recommended illumi lighting – cost efficiency of illuminat leasurement of sound – Noise expose of noise – Effects of Noise on per tion – sources of vibration discomfort	nation leve tion – speci ure and hea formance –	ls al pu tring	irpos loss	The agei e lighting – Hearin	ng eye - g for insp ig protect	– Use ection ors –	of i and analy	ndirect quality sis and
Unit V	WORK PHYSIOLOGY					-			9
expenditure	f energy for muscular work – Role Respiration – Pulse rate and b d its evaluation.								
						тот	AL: 4	5 HO	URS
REFEREN									
1. 1. M	lartin Helander, A guide to the ergono	omics of ma	nufac	cturii	ng, East V	West pres	s, 200	7	
2. 2. E	J. McCormic & Mark S. Sangers, Hu	man factors	in ei	ngino	eering de	sign, McO	Graw I	Hill 20)07
3. 3. R	S. Bridger Introduction to Ergonomic	cs, McGraw	Hill	, 199	95.			_	
						NYCOLL			
					13:	Board of M	preved	Enon P	1st
					(四)	0		2010	
					12	V 6 6	MAR	2019	

3

*

/

KARUR - 639 113

MACAccredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thelavapalayam, Karur, Tamilnadu.

Regulation 2019		ation 2019	Semester II	1	45		
Category Course Code		Course Co. 1		H	Veek		
		Course Code	Course Name	L	Т	Р	C
5.1	E	19PPSE008T	ENERGY MANAGEMENT AND AUDITING	3	0	0	3
Prer	equisit	e Course (s)					
NIL							
Cour	se Obj	ective (s):					-
The p	ourpose	of learning this c	ourse is to:				
1	Expo	se the students to	study the energy management technique	es and au	uditing p	rocess.	
2		122	al value cost and load management techn				
3			management techniques in electrical equ	_	s.	-	
4			netering for energy management.			1	
5	Acqu	ire the basic know	vledge of lighting system and cogenerati	on.		1	
Cour	le contractor	come (s) (COs):					
			ners will be able to:				
CO1	energ	y audit process.	ncepts and starting an energy manageme			1	
CO2	Deter electr	mine the Importa icity, loss evaluat	nt concepts in an economic analysis, util ion and implement load management tec	ity rate s hnique.	structure	s, cost of	
CO3			gy management technique for electrical		ent's.	and the	
CO4	Unde	rstanding the cond	cept of various metering techniques for e	energy m	anagem	ents.	
CO5			ous lighting schemes and cogeneration to				

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University 100 00015 Corte due to the the

Approved by AICTE & Affiliated to Anna Univ ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

9

9

9

9

9

UNIT I INTRODUCTION

Need for energy management – energy basics – designing and starting an energy management program – energy accounting – energy monitoring, targeting and reporting- energy audit process.

UNIT II

ENERGY COST AND LOAD MANAGEMENT

Important concepts in an economic analysis – economic models – time value of money –utility rate structures – cost of electricity – loss evaluation. Load management: demand control techniques – utility monitoring and control system-HVAC and energy management – economic justification.

UNIT III

ENERGY MANAGEMENT FOR MOTORS, SYSTEMS, AND ELECTRICAL EQUIPMENTS

Systems and equipment – electric motors – transformers and reactors – capacitors and synchronous machines.

UNIT IV

METERING FOR ENERGY MANAGEMENT

Relationships between parameters – Units of measure – typical cost factors – utility meters – timing of meter disc for kilowatt measurement – demand meters – paralleling of current transformers – instrument transformer burdens – multitasking solid-state meters – metering location vs. requirements – metering techniques and practical examples.

UNIT V

LIGHTING SYSTEMS AND COGENERATION

Concept of lighting systems – the task and the working space – light sources – ballasts –luminaries – lighting controls – optimizing lighting energy – power factor and effect of harmonics on power quality – cost analysis techniques – lighting and energy standards. Cogeneration: forms of cogeneration – feasibility of cogeneration – electrical interconnection.

Reference (s)1Eastop T.D and Croft D.R, "Energy Efficiency for Engineers and Technologists", Logman
Scientific & Technical, 1996.2Reay D.A., "Industrial Energy Conservation", first edition, Pergamon Press, 1979.3IEEE Recommended Practice for Energy Management in Industrial and Commercial
Facilities, IEEE, 1996.4Amit K. Tyagi, "Handbook on Energy Audits and Management", TERI, 2003.5Barney L. Capehart, Wayne C. Turner, and William J. Kennedy, "Guide to Energy
Management", Fifth Edition, The Fairmont Press, Inc., 2011.

Q

0.00

0.0

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilinadu,

Regulation 2019		Semester III	Te	45		
Category Course Code			Ho	eek		
Categ	gory Course Code	Course Name	L	T	P	C
E	19PPSE015T	3	0	0	3	
Prereq	uisite Course (s)					
Power	Electronics Converters	& Renewable Energy Resources			de -	
Course	e Objective (s):					
The pu	rpose of learning this co	ourse is to:				
1	Acquire knowledge al parameters.	pout the behaviour of solar panels for vari	ation in	differen	t•	
2	To test and understand	d the behaviour and applications of solar p	oanels.			
Course	e Outcome (s) (COs):					
At the	end of this course, learn	ners will be able to:				
CO1	To discuss about the	basic characteristics of sunlight and solar	cells			
CO2	An ability to design a	solar model in standalone system				
CO3	To discuss about the	grid connected PV system				
CO4	An ability to design a	storage system with relevant PV model				
CO5	To discuss about the	various applications of solar energy system	n			

M.KUMARASAMY COLLEGE OF ENGINEERING

NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

U	NIT I	INTRODUCTION	9
Charac proper	teristics of ties – PV ce	sunlight – semiconductors and P-N junctions –behavior of solar cells -	- cell
	NIT II	STAND ALONE PV SYSTEM	9
	modules – s ns design – s	torage systems – power conditioning and regulation - protection – stand alor sizing	ne PV
UN	III TIN	GRID CONNECTED PV SYSTEMS	9
PV sy Efficie	stems in bu	uildings – design issues for central power stations – safety – Economic aspropriate aspropriate and the stational PV programs	pect –
UI	NIT IV	ENERGY STORAGE SYSTEMS	9
	t of intermi electric ener	ttent generation – Battery energy storage – solar thermal energy storage – purgy storage	umped
	NIT V	APPLICATIONS	9
	pumping ommunicati	– battery chargers – solar car – direct-drive applications –Spa	ace -
Refer	ence (s)		
1	Progensa.	Lorenzo G. Araujo, Solar electricity engineering of photovoltaic systems, 2003.	
-	Stuart R.	Wenham, Martin A.Green, Muriel E. Watt and Richard Corkish, Applied taics, 2012.Earthscan, UK.	-
2	Photovol		1000
2	Photovolt Frank S. 2011.	Barnes & Jonah G. Levine, Large Energy storage Systems Handbook, CRC P	1055,
	Frank S. 2011.	Barnes & Jonah G. Levine, Large Energy storage Systems Handbook , CRC P Wind Energy Technologies – McNeils, Frenkel, Desai, Wiley Eastern, 1990	

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

Regulation 2019		tion 2019	Semester III	1	45		
				H			
Cate	gory	Course Code	Course Name	L	Т	Р	C
E	E 19PPSE018T WIND ENERGY CONVERSION SYSTEMS				0	0	3
Prere	quisit	e Course (s)					
Power	r Elect	ronics Application	n to Power Systems	1.1.1			
		ective (s): of learning this c	ourse is to:				
1	Unde	erstand Componer	nts of WECS-WECS schemes				
2	Gain	knowledge on wi	nd turbine				
3	Gain	knowledge on Co	onstant speed constant frequency system	s			4
4	Gain	knowledge on Va	ariable speed constant frequency system	s			
5	Gair	n knowledge on gi	rid connected systems				
Cour	se Out	come (s) (COs):					
At the	e end o	f this course, lear	ners will be able to:				
CO1	1	erstand the differe rate electrical	nt non conventional sources and the pov	ver gene	ration te	chniques	to
CO2	Desi	ign a prescribed e	ngineering sub-system		1.1		1
CO3	Reco field	ognize the need a	nd ability to engage in lifelong learning	for furth	er devel	opments	in this
CO4	Appl	y engineering ma	terials in renewable Energy/ power gene	eration.		1	
CO5	Desi	gn grid connected	and standalone solar systems.				

M.KUMARASAMY COLLEGE OF ENGINEERING NAAC Accredited Autonomous Institution Approved by AICTE & Affiliated to Anna University

K

9

9

9

9

9

UNIT I	INTRODUCTION

ISO 9001:2015 Certified Institution Thalavapalayam, Karur, Tamilnadu.

Components of WECS-WECS schemes-Power obtained from wind-simple momentum theory-Power coefficient-Sabinin's theory-Aerodynamics of Wind turbine

UNIT II WIND TURBINES

HAWT-VAWT-Power developed-Thrust-Efficiency-Rotor selection-Rotor design considerations-Tip speed ratio-No. of Blades-Blade profile-Power Regulation-yaw control-Pitch angle controlstall control-Schemes for maximum power extraction.

UNIT III	FIXED	SPEED	SYSTEMS
UNITIN	T IZYLID	OI LED	DIDIENI

Generating Systems- Constant speed constant frequency systems -Choice of Generators-Deciding factors-Synchronous Generator-Squirrel Cage Induction Generator- Model of Wind Speed-Model wind turbine rotor - Drive Train model-Generator model for Steady state and Transient stability analysis.

UNIT IV

VARIABLE SPEED SYSTEMS

Need of variable speed systems-Power-wind speed characteristics-Variable speed constant frequency systems synchronous generator- DFIG- PMSG -Variable speed generators modeling - Variable speed variable frequency schemes.

UNIT V

GRID CONNECTED SYSTEMS

Stand alone and Grid Connected WECS system-Grid connection Issues-Machine side & Grid side controllers-WECS in various countries

References:

Keler	ences:
1	L.L.Freris "Wind Energy conversion Systems", Prentice Hall, 1990
2	Ion Boldea, "Variable speed generators", Taylor & Francis group, 2015.
3	E.W.Golding "The generation of Electricity by wind power", Redwood burn Ltd., Trowbridge,2001.
4	S.Heir "Grid Integration of WECS", Wiley 2011.
5	Non-Conventional Sources of Energy by: G.D. Rai, Khanna Publishers.

1	Regula	lations 2020			lations 2020 Semester II/III Total I				Semester II/III Total				irs	45
									8	Hours / We		eek	0	
Cate	gory	Cours	e Code			Course Name		L T		P	С			
I	Ξ	20PCA	AE115T			WAST	ГЕ ТО В	ENERG	Y		3	0	0	3
Prere	equisite	e Cours	e (s)											
Nil														
		ective (s of learn	s): ting this	course	is to:									
CO1	Enal	ble stud	ents to u	Indersta	nd of th	e conce	pt of W	aste to E	Energy					
CO2	Link	Link legal, technical and management principles for production of energy form waste												
CO3	Lear	Learn about the best available technologies for waste to energy												
CO4	Ana	Analyze of case studies for understanding success and failures												
C05	Faci	litate th	e studen	ts in de	velopin	g skills	in the d	ecision-	making	process	•	£		
1 1 1 1 1 1 1) (Cos): urse, lea		ill be al	ole to:								
CO1	App	ly the k	nowledg	ge about	the ope	erations	of Was	te to En	ergy Pla	ants.				
CO2	Ana	lyse the	various	aspects	of Was	ste to Er	nergy M	anagem	ent Sys	tems				
CO3	Carr	y out Te	echno-e	conomi	c feasibi	ility for	Waste t	o Energ	y Plants	5				12
CO4	App	ly the k	nowledg	ge in pla	inning a	nd oper	ations o	f Waste	to Ener	rgy plan	ts.	1		
CO5	Take	e decisio	on regar	ding the	enviro	nmental	issues							
CO P	O Map	ping			122		in in L							
			-	_		P	Os						PS	SOs
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
CO1	3	3	2	2	-	2	2	2	1	1	-	2	2	1
CO2	3	2	3	2	2	2	2	1	1	1	8	1	2	1
CO3	2	2	3	2	2	2	2	1	1	1	-	2	2	1
CO4	3	2	3	2	2	2	2	2	1	1	-	2	3	1
CO5	2	2	2	2		- 2	2	1	1	1	-	1	1	1
co														

·····

1: Slight (Low) 2: Moderate (Medium)

UNIT I INTRODUCTION

The Principles of Waste Management and Waste Utilization. Waste Management Hierarchy and 3R Principle of Reduce, Reuse and Recycle. Waste as a Resource and Alternate Energy source.

UNIT II WASTE SOURCES & CHARACTERIZATION

Waste production in different sectors such as domestic, industrial, agriculture, postconsumer, waste etc. Classification of waste – agro based, forest residues, domestic waste, industrial waste (hazardous and non-hazardous). Characterization of waste for energy utilization. Waste Selection criteria.

UNIT III TECHNOLOGIES FOR WASTE TO ENERGY

Biochemical Conversion – Energy production from organic waste through anaerobic digestion and fermentation. Thermo-chemical Conversion – Combustion, Incineration and heat recovery, Pyrolysis, Gasification; Plasma Arc Technology and other newer technologies.

UNIT IV WASTE TO ENERGY OPTIONS

Landfill gas, collection and recovery. Refuse Derived Fuel (RDF) – fluff, briquettes, pellets. Alternate Fuel Resource (AFR) – production and use in Cement plants, Thermal power plants and Industrial boilers. Conversion of wastes to fuel resources for other useful energy applications.

UNIT V WASTE TO ENERGY & ENVIRONMENTAL IMPLICATIONS

Environmental standards for Waste to Energy Plant operations and gas clean-up – Savings on non-renewable fuel resources – Sustainable Materials Carbon Credits: Carbon foot calculations and carbon credits transfer mechanisms – Case Studies

Reference (s)

1	Poonia, M.P., Sharma, S.C., "Environmental Engineering", Khanna Publishers, 2018.
2	Garg, S.K., "Environmental Engineering Vol. I", 24th Edition, New Delhi, Khanna Publishers, 2018.
3	Garg, S.K., "Environmental Engineering Vol. II", 24th Edition, New Delhi, Khanna Publishers, 2018
4	Punmia, B.C., Jain, A.K., and Jain.A., "Environmental Engineering, Vol.II", Lakshmi Publications, 2015.
5	Duggal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 2014.
6	M.M. EL-Halwagi, "Biogas Technology- Transfer and diffusion", Elsevier Applied Science Publisher, New York, 2016.
7	D.O Hall and R.P. Overend, "Biomass – Regenerable Energy", John Willy and Sons Ltd. New York. 1987.

9

9

9

9

Regulations 2020		Semester II/III	T	Total Hours				
Catagory			Ho	Hours / Week				
Category	Course Code	Course Name	L	Т	Р	- C		
E	20PCAE116T	DISASTER MANAGEMENT	3	0	0	3		
Prerequis	ite Course (s)			1	(direct)			
Nil								
Course O	bjective (s):		1	1.		1.12		
The purpo	se of learning this cours	e is to:						
CO1	Provide students an ex	posure to disasters, their significance and ty	pes.					
CO2	Gain a preliminary une	lerstanding of approaches of Disaster Risk I	Reduction (D)	RR)				
CO3	Ensure that students be prevention and risk rec	egin to understand the relationship between luction.	vulnerability,	disaster	s, disast	er		
CO4	Learn about people inv	volved in disaster management for both sudd	len-onset nati	ıral disa	sters.			
CO5	Develop rudimentary a where they live, with a	bility to respond to their surroundings with ue sensitivity.	potential disa	ster resj	oonse in	areas		
	utcome (s) (Cos):							
At the end	of this course, learners	will be able to:						
CO1	Differentiate the types	of disasters, causes and their impact on envi	ironment and	society.				
CO2	Assess vulnerability ar	d various methods of risk reduction measur	es as well as	mitigati	on.			
CO3	Disaster damage assess	sment and management.		17				
CO4	Differentiate various N	atural Disasters.						
CO5	Apply the Case Studies							

9..... U

COs	POs												PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C01	3	2	2	-	-	1	-	्म		-	-	1		-
CO2	3	2	2	(j		1	*	-	-	-	-	1		÷
CO3	3	2	-	-	-	1	÷		Э.	=		1		
CO4	3	2	-	-	-	1	=	-		-	-	1		21
CO5	3	2	-	-	9=	1	-	3 2 3	2	N 🚔	-	1	(*)	
CO (Avg)	3.00	2.00	2.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	1.00	-	2

3: Substantial (High) of ENCG. (4) Board of Civil Engo. Approved on 2. 04 JUN 2021 KUMAR. KARUR - 639 113

UNIT I INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters, Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts – Global trends in disasters: urban disasters, pandemics, complex emergencies,

UNIT II NATURAL AND MAN-MADE DISASTERS

Climate change: Wind related- Cyclone, Storm, Storm surge, Tidal waves, Heat and cold Waves- Climatic Change- Global warming- Sea Level rise – Ozone Depletion – Man Made Disasters – Do's and Don'ts during various types of disasters – Possible remedies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India – Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV APPROACHES TO DISASTER RISK REDUCTION

Disaster cycle – Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- non-structural measures, Roles and responsibilities of community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Institutional Processes and Framework at State and Central Level- State Disaster Management Authority(SDMA) - National Disaster Management Authority (NDMA)– Early Warning System – Advisories from Appropriate Agencies.

UNIT V CASE STUDIES AND FIELD WORKS

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

Reference (s)

1 Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423

Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]

3 Gupta Anil K, Sreeja S. Nair. "Environmental Knowledge for Disaster Risk Management", NIDM, New Delhi, 2011

4 Kapur Anu "Vulnerable India: A Geographical Study of Disasters", IIAS and Sage Publishers, New Delhi.

9

9

9